Abstract:
A hybrid porous structure may include a base template and an ionic polymer coating layer within the base template. The structural framework of the base template itself is non-porous. The base template fills the gaps among a plurality of imaginary spherical bodies stacked in three-dimensions as an imaginary stack. The ionic polymer coating layer is laminated on an inner surface of the base template inside the imaginary spherical bodies. The imaginary spherical bodies may have a pore in the center which is not occupied by the ionic polymer coating layer. The hybrid porous structure may include a plurality of necks, which are openings formed in a contact part where adjacent imaginary spherical bodies contact each other. The necks may be interconnected to the pores located in the center part of the imaginary spherical bodies.
Abstract:
A hybrid porous structured material may include a porous region (that forms a nanopore structure) and a non-porous region. The porous region may form a stacked structure where a plurality of spherical bodies are stacked so as to contact each other in three dimensions. The non-porous region may form a structure that fills a gap between the plurality of spherical bodies of the porous region.
Abstract:
A draw solute for forward osmosis may include a copolymer including a first structural unit, where a temperature-sensitive side chain is graft polymerized, and a second structural unit including a hydrophilic functional group. The temperature-sensitive side chain may include a structural unit for a side chain including a temperature-sensitive moiety. The temperature-sensitive moiety may be represented by Chemical Formula 1, Chemical Formula 2, or Chemical Formula 3: wherein R1 and R2 are each independently hydrogen or a linear or branched C3 to C5 alkyl group, provided that at least one of R1 and R2 is not hydrogen, R3 is a C3 to C5 alkylene group, and R4 is a linear or branched C3 to C5 alkyl group. The draw solute may be used to form an osmosis draw solution for use in a forward osmosis water treatment device and method.
Abstract:
Example embodiments relate to a membrane, a method of manufacturing the same, and a composite membrane including the same. The membrane may include a polyacrylonitrile-based copolymer that includes a hydrophobic side chain and/or a hydrophobic repeating unit. The membrane may include a skin layer and a porous layer. A thickness ratio of the skin layer relative to the porous layer may be about 0.01 or less. The skin layer may have a thickness of about 1 μm or less. The membrane may have a relatively high water flux. When using the membrane, a water treatment module having higher energy efficiency may be achieved.
Abstract:
An organic/inorganic fouling resistant composite compound is disclosed, which includes a core of a polyhedron of polyhedral oligomeric silsesquioxane and at least one arm connected to a silicon atom of the polyhedral oligomeric silsesquioxane. The at least one arm includes a vinyl-based first structural unit including at least one ethylene oxide group at a side chain of the vinyl-based first structural unit and an oleophobic vinyl-based second structural unit including a silicon group at the side chain.
Abstract:
An organic/inorganic composite compound for fouling resistance may include a core and at least an arm. The core may be formed of a polyhedron of polyhedral oligomeric silsesquioxane. At least one arm may be connected to a Si atom of the polyhedral oligomeric silsesquioxane. The arm may include a vinyl-based first structural unit including at least one ethylene oxide group at the side chain, and a hydrophobic vinyl-based second structural unit.
Abstract:
An organic/inorganic composite compound for fouling resistance may include a core and at least an arm. The core may be formed of a polyhedron of polyhedral oligomeric silsesquioxane. At least one arm may be connected to a Si atom of the polyhedral oligomeric silsesquioxane. The arm may include a vinyl-based first structural unit including at least one ethylene oxide group at the side chain, and a hydrophobic vinyl-based second structural unit.
Abstract:
A draw solute for forward osmosis may include a copolymer including a first structural unit where a temperature-sensitive side chain is graft polymerized, and a second structural unit including a hydrophilic functional group. The temperature-sensitive side chain may include a structural unit for a side chain including a temperature-sensitive moiety.
Abstract:
A fingerprint recognition method and system for recognizing a fingerprint by storing local fingerprint images inputted from a fingerprint sensor and compositing the stored local fingerprint images into an effective single fingerprint image. The method includes obtaining relative sliding speed and directional information between the local fingerprint images, correcting sliding speed and directional values of the local fingerprint images using the obtained sliding speed and directional information, and compositing the local fingerprint images into the effective single fingerprint image using the corrected sliding speed and directional values.
Abstract:
A hybrid porous structured material may include a porous region (that forms a nanopore structure) and a non-porous region. The porous region may form a stacked structure where a plurality of spherical bodies are stacked so as to contact each other in three dimensions. The non-porous region may form a structure that fills a gap between the plurality of spherical bodies of the porous region.