Abstract:
The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
Abstract:
In a method for producing a high quality silicon single crystal by the Czochralski method, a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part and a circumferential part, and the temperature gradient of the central part and the temperature gradient of the circumferential part are separately controlled. When a silicon melt located at a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part melt and a circumferential part melt, the method controls the temperature gradient of the central part melt by directly controlling the temperature distribution of a melt and indirectly controls the temperature gradient of the circumferential part melt by controlling the temperature gradient of the single crystal, thereby effectively controlling the overall temperature distribution of the melt, thus producing a high quality single crystal ingot free of defects with a high growth velocity.
Abstract:
Disclosed is a method of growing a single crystal from a melt contained in a crucible. The method includes the step of making the temperature of a melt increase gradually to a maximum point and then decrease gradually along the axis parallel to the lengthwise direction of the single crystal from the interface of the single crystal and the melt to the bottom of the crucible. The increasing temperature of the melt is kept to preferably have a greater temperature gradient than the decreasing temperature thereof. Preferably, the axis is set to pass through the center of the single crystal. Preferably, the convection of the inner region of the melt is made smaller than that of the outer region thereof.
Abstract:
The present invention relates to a single crystalline silicon ingot, a single crystalline wafer, and a producing method thereof in accordance with the Czochralski method which enables reduction of a large defect area while increasing a micro-vacancy defect area in an agglomerated vacancy point area, which is the area between a central axis and an oxidation-induced stacking fault ring, by providing uniform conditions of crystal ingot growth and cooling and by adjusting a pulling rate for growing an ingot to grow, thus the oxidation-induced stacking fault ring exists only at an edge of the ingot radius.
Abstract:
The present invention relates to a method for manufacturing an ultra low defect semiconductor single crystalline ingot, which uses a Czochralski process for growing a semiconductor single crystalline ingot through a solid-liquid interface by dipping a seed into a semiconductor melt received in a quartz crucible and slowly pulling up the seed while rotating the seed, wherein a defect-free margin is controlled by increasing or decreasing a heat space on a surface of the semiconductor melt according to change in length of the single crystalline ingot as progress of the single crystalline ingot growth process.
Abstract:
Disclosed is a method of fabrication of high quality silicon single crystal at high growth rate. The method grows silicon single crystal from silicon melt by Czochralski method, wherein the silicon single crystal is grown according to conditions that the silicon melt has an axial temperature gradient determined according to an equation, {(ΔTmax−ΔTmin)/ΔTmin}×100≦10, wherein ΔTmax is a maximum axial temperature gradient of the silicon melt and ΔTmin is a minimum axial temperature gradient of the silicon melt, when the axial temperature gradient is measured along an axis parallel to a radial direction of the silicon single crystal.
Abstract:
The present invention relates to an apparatus for manufacturing a high-quality semiconductor single crystal ingot and a method using the same. The apparatus of the present invention includes a quartz crucible, a heater installed around a side wall of the quartz crucible, a single crystal pulling means for pulling a single crystal from the semiconductor melt received in the quartz crucible, and a magnetic field applying means for forming a Maximum Gauss Plane (MGP) at a location of ML-1000 mm to ML-350 mm based on a Melt Level (ML) of the melt surface, and applying a strong magnetic field of 3000 to 5500 Gauss to an intersection between the MGP and the side wall of the quartz crucible and a weak magnetic field of 1500 to 3000 Gauss below a solid-liquid interface.
Abstract:
In a method for producing a high quality silicon single crystal by the Czochralski method, a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part and a circumferential part, and the temperature gradient of the central part and the temperature gradient of the circumferential part are separately controlled. When a silicon melt located at a lower portion of a solid-liquid interface of a single crystal growth is divided into a central part melt and a circumferential part melt, the method controls the temperature gradient of the central part melt by directly controlling the temperature distribution of a melt and indirectly controls the temperature gradient of the circumferential part melt by controlling the temperature gradient of the single crystal, thereby effectively controlling the overall temperature distribution of the melt, thus producing a high quality single crystal ingot free of defects with a high growth velocity.
Abstract:
Disclosed is a method of growing a single crystal from a melt contained in a crucible. The method includes the step of making the temperature of a melt increase gradually to a maximum point and then decrease gradually along the axis parallel to the lengthwise direction of the single crystal from the interface of the single crystal and the melt to the bottom of the crucible. The increasing temperature of the melt is kept to preferably have a greater temperature gradient than the decreasing temperature thereof. Preferably, the axis is set to pass through the center of the single crystal. Preferably, the convection of the inner region of the melt is made smaller than that of the outer region thereof.
Abstract:
The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.