Abstract:
The present invention relates to a solar cell. The solar cell includes a substrate of a first conductive type, the substrate having a textured surface on which a plurality of projected portions are formed, and surfaces of the projected portions having at least one of a plurality of particles attached thereto and a plurality of depressions formed thereon; an emitter layer of a second conductive type opposite the first conductive type, the emitter layer being positioned in the substrate so that the emitter layer has the textured surface; an anti-reflection layer positioned on the emitter layer which has the textured surface and including at least one layer; a plurality of first electrodes electrically connected to the emitter layer; and at least one second electrode electrically connected to the substrate.
Abstract:
A Solar cell includes a substrate of a first conductive type; a first emitter portion positioned in the substrate and containing impurities of a second conductive type opposite the first conductive type; a second emitter portion positioned at the first emitter portion and containing impurities of the second conductive type, the second emitter portion having an impurity concentration higher than an impurity concentration of the first emitter portion; a first electrode connected to the second emitter portion; and a second electrode connected to the substrate, wherein the second emitter portion has a thickness equal to or less than a thickness of the first emitter portion.
Abstract:
The present invention relates to a solar cell. The solar cell includes a substrate of a first conductive type, the substrate having a textured surface on which a plurality of projected portions are formed, and surfaces of the projected portions having at least one of a plurality of particles attached thereto and a plurality of depressions formed thereon; an emitter layer of a second conductive type opposite the first conductive type, the emitter layer being positioned in the substrate so that the emitter layer has the textured surface; an anti-reflection layer positioned on the emitter layer which has the textured surface and including at least one layer; a plurality of first electrodes electrically connected to the emitter layer; and at least one second electrode electrically connected to the substrate.
Abstract:
Disclosed is a method for manufacturing a solar cell. The method includes forming an impurity layer on a substrate of a first conductive type, the impurity layer having impurities of a second conductive type opposite the first conductive type; forming a first emitter portion having a first impurity concentration in the substrate using the impurity layer by heating the substrate with the impurity layer; forming a second emitter portion having a second impurity concentration at the first emitter portion using the impurity layer by irradiating laser beams on a region of the impurity layer, the second impurity concentration being greater than the first impurity concentration; and forming a first electrode connected to the second emitter portion and a second electrode connected to the substrate.
Abstract:
A solar cell and a solar cell module are disclosed. The solar cell includes a substrate of a first conductive type, a plurality of emitter layers of a second conductive type opposite the first conductive type, a plurality of first conductive members partially connected to the substrate, and a plurality of second conductive members partially connected to each of the plurality of emitter layers.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The solar cell may include a substrate, an emitter layer positioned at a first surface of the substrate, a first anti-reflection layer that is positioned on a surface of the emitter layer and may include a plurality of first contact lines exposing a portion of the emitter layer, a first electrode that is electrically connected to the emitter layer exposed through the plurality of first contact lines and may include a plating layer directly contacting the emitter layer, and a second electrode positioned on a second surface of the substrate.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The solar cell includes a substrate, an emitter layer at a front surface of the substrate, a first anti-reflection layer on the emitter layer, a back surface field layer at a back surface of the substrate, and a second anti-reflection layer on the back surface field layer. The first anti-reflection layer and the second anti-reflection layer overlap may each other.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The solar cell includes a substrate, an emitter layer at a front surface of the substrate, a first anti-reflection layer on the emitter layer, a back surface field layer at a back surface of the substrate, and a second anti-reflection layer on the back surface field layer. The first anti-reflection layer and the second anti-reflection layer overlap may each other.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The solar cell may include a substrate, an emitter layer positioned at a first surface of the substrate, a first anti-reflection layer that is positioned on a surface of the emitter layer and may include a plurality of first contact lines exposing a portion of the emitter layer, a first electrode that is electrically connected to the emitter layer exposed through the plurality of first contact lines and may include a plating layer directly contacting the emitter layer, and a second electrode positioned on a second surface of the substrate.
Abstract:
A solar cell and a method for manufacturing the same are disclosed. The solar cell includes a substrate, an emitter region positioned at one surface of the substrate, a first insulating layer including a lower layer positioned on the emitter region and an upper layer positioned on the lower layer, and a first electrode which is formed of a first conductive paste and is electrically connected to the emitter region. The first insulating layer includes a plurality of first contact holes, and a portion of the first electrode is filled in the plurality of first contact holes.