Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
A method for reducing defects in an active device area of a semiconductor device during fabrication is disclosed. In one aspect, the method comprises providing the active device area adjacent an isolation structure, wherein a substantially planar surface is formed over the isolation structure and the active device area, forming a patterned stress-inducing layer over the substantially planar surface, forming at least one screening layer between the patterned stress-inducing layer and the substantially planar surface, where the screening layer is configured to screen part of the stress field induced by the patterned stress-inducing layer, performing an anneal process after forming the patterned stress-inducing layer on the substantially planar surface, so as to induce a movement of the defects towards a contact interface between the active device area and the isolation structure, and removing the patterned stress-inducing layer from the substantially planar surface.
Abstract:
A method for manufacturing a transistor device is provided, the transistor device comprising a germanium based channel layer, the method comprising providing a gate structure on the germanium comprising channel layer provided on a substrate, the gate structure being provided between a germanium based source area and a germanium based drain area at opposite sides of the germanium comprising channel layer; providing a capping layer on the germanium based source and the germanium based drain area, the capping layer comprising Si and Ge; depositing a metal layer on the capping layer; performing a temperature step, thereby transforming at least part of the capping layer into a metal germano-silicide which is not soluble in a predetermined etchant adapted for dissolving the metal; selectively removing non-consumed metal from the substrate by means of the predetermined etchant; and providing a premetal dielectric layer.
Abstract:
The disclosure is related to a band engineered semiconductor device comprising a substrate, a protruding structure that is formed in a recess in the substrate and is extending above the recess having a buried portion and an extended portion, and wherein at least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such band engineered semiconductor device.
Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
A method for manufacturing a transistor device is provided, the transistor device comprising a germanium based channel layer, the method comprising providing a gate structure on the germanium comprising channel layer provided on a substrate, the gate structure being provided between a germanium based source area and a germanium based drain area at opposite sides of the germanium comprising channel layer; providing a capping layer on the germanium based source and the germanium based drain area, the capping layer comprising Si and Ge; depositing a metal layer on the capping layer; performing a temperature step, thereby transforming at least part of the capping layer into a metal germano-silicide which is not soluble in a predetermined etchant adapted for dissolving the metal; selectively removing non-consumed metal from the substrate by means of the predetermined etchant; and providing a premetal dielectric layer.
Abstract:
A method for reducing defects in an active device area of a semiconductor device during fabrication is disclosed. In one aspect, the method comprises providing the active device area adjacent an isolation structure, wherein a substantially planar surface is formed over the isolation structure and the active device area, forming a patterned stress-inducing layer over the substantially planar surface, forming at least one screening layer between the patterned stress-inducing layer and the substantially planar surface, where the screening layer is configured to screen part of the stress field induced by the patterned stress-inducing layer, performing an anneal process after forming the patterned stress-inducing layer on the substantially planar surface, so as to induce a movement of the defects towards a contact interface between the active device area and the isolation structure, and removing the patterned stress-inducing layer from the substantially planar surface.