Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
A vertical FinFET semiconductor device and a method of forming the same are disclosed. In one aspect, the semiconductor device includes a current-blocking structure formed over a semiconductor structure and a semiconductor fin formed on the current-blocking structure. The current blocking structure includes a first layer of a first conductive type, a layer of a second conductive type over the first layer, and a second layer of the first conductive type over the layer of the second conductive type. The semiconductor fin has a doped bottom portion contacting the current-blocking structure, a doped top portion formed vertically opposite to the doped bottom portion and a channel portion vertically interposed between the doped bottom portion and the doped top portion.
Abstract:
A method for reducing defects in an active device area of a semiconductor device during fabrication is disclosed. In one aspect, the method comprises providing the active device area adjacent an isolation structure, wherein a substantially planar surface is formed over the isolation structure and the active device area, forming a patterned stress-inducing layer over the substantially planar surface, forming at least one screening layer between the patterned stress-inducing layer and the substantially planar surface, where the screening layer is configured to screen part of the stress field induced by the patterned stress-inducing layer, performing an anneal process after forming the patterned stress-inducing layer on the substantially planar surface, so as to induce a movement of the defects towards a contact interface between the active device area and the isolation structure, and removing the patterned stress-inducing layer from the substantially planar surface.
Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
A method for reducing defects in an active device area of a semiconductor device during fabrication is disclosed. In one aspect, the method comprises providing the active device area adjacent an isolation structure, wherein a substantially planar surface is formed over the isolation structure and the active device area, forming a patterned stress-inducing layer over the substantially planar surface, forming at least one screening layer between the patterned stress-inducing layer and the substantially planar surface, where the screening layer is configured to screen part of the stress field induced by the patterned stress-inducing layer, performing an anneal process after forming the patterned stress-inducing layer on the substantially planar surface, so as to induce a movement of the defects towards a contact interface between the active device area and the isolation structure, and removing the patterned stress-inducing layer from the substantially planar surface.
Abstract:
The disclosed technology relates generally to semiconductor processing and more particularly to a method of forming a vertical field-effect transistor device. According to an aspect, a method of forming a vertical field-effect transistor device comprises forming on a substrate a vertical semiconductor structure protruding above the substrate and comprising a lower source/drain portion, an upper source/drain portion and a channel portion arranged between the lower source/drain portion and the upper source/drain portion. The method additionally comprises forming on the channel portion an epitaxial semiconductor stressor layer enclosing the channel portion, wherein the stressor layer and the channel portion are lattice mismatched, forming an insulating layer and a sacrificial structure, wherein the sacrificial structure encloses the channel portion with the stressor layer formed thereon and wherein the insulating layer embeds the semiconductor structure and the sacrificial structure, forming in the insulating layer an opening exposing a surface portion of the sacrificial structure, and etching the sacrificial structure through the opening in the insulating layer, thereby forming a cavity exposing the stressor layer enclosing the channel portion. The method further comprises, subsequent to etching the sacrificial structure, etching the stressor layer in the cavity, and subsequent to etching the stressor layer, forming a gate stack in the cavity, wherein the gate stack encloses the channel portion of the vertical semiconductor structure.
Abstract:
A FinFET device and a method for manufacturing a FinFET device is provided. An example device may comprise a substrate including at least two fin structures. Each of the at least two fin structures may be in contact with a source and drain region and each of the at least two fin structures may include a strain relaxed buffer (SRB) overlying and in contact with the substrate and an upper layer overlying and in contact with the SRB. The composition of the upper layer and the SRB may be selected such that the upper layer of a first fin structure is subjected to a first mobility enhancing strain in the as-grown state, the first mobility enhancing strain being applied in a longitudinal direction from the source region to the drain region and where at least an upper part of the upper layer of a second fin structure is strain-relaxed.
Abstract:
A method includes: forming a structure on a frontside of a substrate, the structure including a first and a second source/drain body located in a first and a second source/drain region, respectively, and a channel body including a channel layer extending between the first and second source/drain bodies; forming a trench beside the first source/drain region by etching the substrate such that a lower portion of the trench undercuts the first source/drain region; forming a liner on the trench; forming an opening in the liner underneath the first source/drain region; and forming a dummy interconnect in the trench; where the method further includes exposing the dummy interconnect from a backside of the substrate; removing the dummy interconnect selectively to the liner; and forming a buried interconnect of a conductive material in the trench, where the buried interconnect is connected to the first source/drain body via the opening in the liner.
Abstract:
A semiconductor structure comprises a semiconductor substrate having a top layer and one or more semiconductor monocrystalline nanostructures. Each nanostructure has a first and a second extremity defining an axis parallel to the top surface of the semiconductor substrate and separated therefrom by a distance, and a source structure epitaxially grown on the first extremity and a drain structure epitaxially grown on the second extremity. The source and drain structures are made of a p-doped (or alternatively n-doped) semiconductor monocrystalline material having a smaller (or alternatively larger) unstrained lattice constant than the unstrained lattice constant of the semiconductor monocrystalline material making the semiconductor monocrystalline nanostructure on which they are grown, thereby creating compressive (or alternatively tensile) strain in that semiconductor monocrystalline nanostructure.
Abstract:
Disclosed herein is a semiconductor structure including: (i) a monocrystalline substrate having a top surface, (ii) a non-crystalline structure overlying the monocrystalline substrate and including an opening having a width smaller than 10 microns and exposing part of the top surface of the monocrystalline substrate. The semiconductor structure also includes (iii) a buffer structure having a bottom surface abutting the part and a top surface having less than 108 threading dislocations per cm2, the buffer structure being made of a material having a first lattice constant. The semiconductor structure also includes (iv) one or more group IV monocrystalline structures abutting the buffer structure and that are made of a material having a second lattice constant, different from the first lattice constant.