Abstract:
The disclosure is related to a band engineered semiconductor device comprising a substrate, a protruding structure that is formed in a recess in the substrate and is extending above the recess having a buried portion and an extended portion, and wherein at least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such band engineered semiconductor device.
Abstract:
The disclosure is related to a band engineered semiconductor device comprising a substrate, a protruding structure that is formed in a recess in the substrate and is extending above the recess having a buried portion and an extended portion, and wherein at least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such band engineered semiconductor device.
Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
The disclosure is related to a band engineered semiconductor device comprising a substrate and a protruding structure that is formed in a recess in the substrate. The protruding structure extends above the recess and has a buried portion and an extended portion. At least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such a band engineered semiconductor device.
Abstract:
The disclosure is related to a band engineered semiconductor device comprising a substrate and a protruding structure that is formed in a recess in the substrate. The protruding structure extends above the recess and has a buried portion and an extended portion. At least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such a band engineered semiconductor device.
Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
A nanostructure according to the present disclosure comprises a pair of nanosheet or nanowire transistors configured to conduct charge by carriers of opposite polarity (such as n and p type carriers), wherein one of the pair of transistors is provided with inner spacers and the other is not provided with inner spacers. Depending on the type of charge carrier, the omission of the inner spacers may improve the admittance of the device. This is demonstrated in an example embodiment comprising a Si-channel PMOS nanosheet transistor. Conversely, in a Si-channel NMOS nanosheet transistor, the omission of the inner spacers has a negative effect on the parasitic capacitance that outweighs some of the benefits of the inner spacer omission. An example embodiment of the present disclosure includes complementary NMOS and PMOS silicon transistors, wherein the NMOS is provided with inner spacers and the PMOS is not provided with inner spacers.
Abstract:
A method is provided for forming a FET device. The method includes: forming a preliminary device structure comprising a fin structure comprising a layer stack comprising channel layers and non-channel layers alternating the channel layers, and a deposited layer along a first side of the fin structure and a dummy structure along a second side of the fin structure; forming a mask line; forming along a first side of the fin structure a source and drain trench in the deposited layer; forming a set of source and drain cavities in the layer stack, by etching the fin structure from the source trench and the drain trench; forming a source body and a drain body comprising a respective common body portion a set of prongs protruding from the respective common body portion into the source and drain cavities; embedding the mask line in a cover material and removing the mask structure; forming a gate trench by etching the dummy structure; forming a set of gate cavities in the layer stack by etching the fin structure from the gate trench; and forming a gate body comprising a common gate body portion in the gate trench and a set of gate prongs protruding from the common gate body portion into the gate cavities.
Abstract:
An integrated circuit device includes a clock distribution network that includes a clock mesh formed by first clock lines and second clock lines. The first clock lines and the second clock lines are arranged at the same level in a backside interconnect structure of the integrated circuit device and are interconnected by crossing each other.
Abstract:
An implant free quantum well transistor wherein the doped region comprises an implant region having an increased concentration of dopants with respect to the concentration of dopants of adjacent regions of the substrate, the implant region being substantially positioned at a side of the quantum well region opposing the gate region.