Nanopore transistor for biosensing

    公开(公告)号:US12188895B2

    公开(公告)日:2025-01-07

    申请号:US17692717

    申请日:2022-03-11

    Applicant: IMEC VZW

    Abstract: A method for forming a nanopore transistor and a nanopore transistor is provided. The method includes: (a) forming an aperture in a filler material by: (i) providing a fin comprising a semiconductor layer and a top layer; (ii) patterning the top layer to form a pillar; (iii) embedding the pillar in a filler material; (iv) removing the pillar, leaving an aperture; (v) lining the aperture with a spacer material; (b) forming a nanopore by etching through the aperture; (b) lining the nanopore with a dielectric, (c) forming a source and a drain by either: between steps a.ii and a.iii, doping the bottom semiconductor layer by using the pillar as a mask, or after step c, filling the aperture with a sealing material, thereby forming a post; removing the filler material; doping the bottom semiconductor layer by using the post as a mask; and removing the sealing material.

    Method for manufacturing a fluid sensor device and a fluid sensor device

    公开(公告)号:US11676851B2

    公开(公告)日:2023-06-13

    申请号:US16957090

    申请日:2018-12-19

    Applicant: IMEC VZW

    CPC classification number: H01L21/76251 G01N27/4145 G01N27/4146 G01N27/4148

    Abstract: According to an aspect of the present inventive concept there is provided a method for manufacturing a fluid sensor device comprising: bonding a silicon-on-insulator arrangement comprising a silicon wafer, a buried oxide, a silicon layer, and a first dielectric layer, to a CMOS arrangement comprising a metallization layer and a planarized dielectric layer, wherein the bonding is performed via the first dielectric layer and the planarized dielectric layer; forming a fin-FET arrangement in the silicon layer, wherein the fin-FET arrangement is configured to function as a fluid sensitive fin-FET arrangement; removing the buried oxide and the silicon wafer; forming a contact to the metallization layer and the fin-FET arrangement, wherein the contact comprises an interconnecting structure configured to interconnect the metallization layer and the fin-FET arrangement; forming a channel comprising an inlet and an outlet, wherein the channel is configured to allow a fluid comprising an analyte to contact the fin-FET arrangement.

    Semiconductor device for detecting fluorescent particles

    公开(公告)号:US10267733B2

    公开(公告)日:2019-04-23

    申请号:US15312116

    申请日:2015-05-22

    Applicant: IMEC VZW

    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.

    Semiconductor Device for Detecting Fluorescent Particles

    公开(公告)号:US20170082544A1

    公开(公告)日:2017-03-23

    申请号:US15312116

    申请日:2015-05-22

    Applicant: IMEC VZW

    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.

    NANOPORE TRANSISTOR FOR BIOSENSING

    公开(公告)号:US20220334079A1

    公开(公告)日:2022-10-20

    申请号:US17692717

    申请日:2022-03-11

    Applicant: IMEC VZW

    Abstract: A method for forming a nanopore transistor and a nanopore transistor is provided. The method includes: (a) forming an aperture in a filler material by: (i) providing a fin comprising a semiconductor layer and a top layer; (ii) pattering the top layer to form a pillar; (iii) embedding the pillar in a filler material; (iv) removing the pillar, leaving an aperture; (v) lining the aperture with a spacer material; (b) forming a nanopore by etching through the aperture; (b) lining the nanopore with a dielectric, (c) forming a source and a drain by either: between steps a.ii and a.iii, doping the bottom semiconductor layer by using the pillar as a mask, or after step c, filling the aperture with a sealing material, thereby forming a post; removing the filler material; doping the bottom semiconductor layer by using the post as a mask; and removing the sealing material.

    Method for Manufacturing a Microfluidic Device

    公开(公告)号:US20230127645A1

    公开(公告)日:2023-04-27

    申请号:US18045287

    申请日:2022-10-10

    Applicant: IMEC VZW

    Abstract: An intermediate structure for a microfluidic device and a method for manufacturing a microfluidic device are provided. The method includes: a) providing a first substrate having a first layer thereon, and a second layer on the first layer; b) forming a first nanopore in the second layer, in such a way that a part of the first layer coincides with a bottom of the first nanopore; c) exposing said part of the first layer to a liquid etchant, thereby forming a cavity under the first nanopore, the cavity having a larger width than a width of the bottom of the first nanopore; d) filling the first nanopore and the cavity with a filling material, thereby forming a first plug; e) forming a bottom fluidic access for the nanopore by removing part of the first substrate and part of the first layer so as to expose the plug; and f) removing the plug, thereby fluidly connecting the bottom fluidic access to the nanopore.

    Environmental waveguide sensor with improved design configuration

    公开(公告)号:US11408764B2

    公开(公告)日:2022-08-09

    申请号:US16703657

    申请日:2019-12-04

    Abstract: A sensor comprises: a thin structure, which is configured to receive a force for deforming a shape of the thin structure and which is arranged above a substrate; and a waveguide for guiding an electro-magnetic wave comprising: a first waveguide part; and a second waveguide part; wherein the second waveguide part has a larger width than the first waveguide part; and wherein the first and the second waveguide parts are spaced apart by a gap which is sufficiently small such that the first and second waveguide parts unitely form a single waveguide, wherein one of the first and the second waveguide part is arranged at least partly on the thin structure and another of the first and the second waveguide part is arranged on the substrate.

    Nanopore FET sensor with non-linear potential profile

    公开(公告)号:US11367797B2

    公开(公告)日:2022-06-21

    申请号:US16761712

    申请日:2018-07-24

    Applicant: IMEC VZW

    Abstract: In a first aspect, the present invention relates to a nanopore field-effect transistor sensor (100), comprising: i) a source region (310) and a drain region (320), defining a source-drain axis; ii) a channel region (330) between the source region (310) and the drain region (320); iii) a nanopore (400), defined as an opening in the channel region (330) which completely crosses through the channel region (330), oriented at an angle to the source-drain axis, having a first orifice (410) and a second orifice (420), and being adapted for creating a non-linear potential profile between the first (410) and second (420) orifice.

Patent Agency Ranking