Abstract:
A composite electrode material of a lithium secondary battery and a lithium secondary battery are provided. The composite electrode material of the lithium secondary battery at least includes an electrode active powder and a nanoscale coating layer coated on the surface of the electrode active powder, wherein the nanoscale coating layer is composed of a metastable state polymer, a compound A, a compound B, or a combination thereof. The compound A is a monomer having a reactive terminal functional group, and the compound B is a heterocyclic amino aromatic derivative used as an initiator. The weight ratio of the nanoscale coating layer to the composite electrode material of the lithium secondary battery is 0.005% to 10%.
Abstract:
A precursor composition of a gel electrolyte is provided, which includes (1) meta-stable nitrogen-containing polymer, (2) gelling promoter, (3) carbonate compound, and (4) metal salt. The (1) meta-stable nitrogen-containing polymer is formed by reacting (a) nitrogen-containing heterocyclic compound with (b) maleimide compound, wherein (a) nitrogen-containing heterocyclic compound and (b) maleimide compound have a molar ratio of 1:0.1 to 1:10.
Abstract:
The disclosure relates to a gel polymer electrolyte and/or polymer modified electrode materials for lithium batteries. The gel polymer electrolyte or the polymer modified electrode material includes at least a polymer represented by the following formula (I):
Abstract:
A composite electrode material of a lithium secondary battery and a lithium secondary battery are provided. The composite electrode material of the lithium secondary battery at least includes an electrode active powder and a nanoscale coating layer coated on the surface of the electrode active powder, wherein the nanoscale coating layer is composed of a metastable state polymer, a compound A, a compound B, or a combination thereof. The compound A is a monomer having a reactive terminal functional group, and the compound B is a heterocyclic amino aromatic derivative used as an initiator. The weight ratio of the nanoscale coating layer to the composite electrode material of the lithium secondary battery is 0.005% to 10%.
Abstract:
Provided is an anode material for a lithium ion battery including an anode active material, an organic modified layer, and a lithium-containing inorganic layer. The organic modified layer is disposed on the anode active material. The lithium-containing inorganic layer is disposed on the organic modified layer. Moreover, based on 100 parts by weight of the anode active material, the organic modified layer accounts for about 0.1 to 5 parts by weight, and the lithium-containing inorganic layer accounts for about 0.1 to 20 parts by weight. A lithium ion battery including the anode material is further provided.
Abstract:
The application relates to a gel polymer electrolyte and/or polymer modified electrode materials for lithium batteries. The gel polymer electrolyte or the polymer modified electrode material includes at least a polymer represented by the following formula (I):
Abstract:
Provided are a bimolecular block polymer and an electrolyte and an electrical double layer capacitor containing the same. The bimolecular block polymer is suitable for an electrolyte of a capacitor, and is formed by polymerizing a first compound and a second compound. The first compound is represented by one of formula (A-1) to formula (A-4). The second compound is represented by one of formula (B-1) to formula (B-5). A molar ratio of the first compound to the second compound is between 5:1 and 1:5.
Abstract:
An ion exchange membrane is provided. The ion exchange membrane includes a reaction product of a polymer and a cross-linking reagent. The polymer includes a first repeat unit, and a second repeat unit. In particular, the first repeat unit is and, the second repeat unit is wherein R+ is A− is F−, Cl−, Br−, I−, OH−, HCO3−, HSO4−, SbF6−, BF4−, H2PO4−, H2PO3−, or H2PO2−; X is CH2iYCH2j, i and j are independently 0, or an integer from 1 to 4; Y is —O—, —S—, —CH2—, or —NH—; R1 is independently C1-8 alkyl group; and, R2 and R3 are hydrogen, or independently C1-8 alkyl group; and, the cross-linking reagent is a compound having at least two imide groups.