Abstract:
In accordance with an embodiment, a method includes: obtaining a random delay for an emission of a radar pulse; and controlling a radar sensor to emit the radar pulse at a point in time delayed by the random delay.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
A common-mode suppressor for eliminating common-mode noise in high frequency differential data transmission systems and an associated method includes a long coiled differential transmission line configured to transfer data between a source and a load. The differential transmission line comprises a first conductive wire and a second conductive wire which are inductively and capacitively coupled and are laterally aligned or vertically aligned with each other. Further, the differential transmission line is matched for differential signals and un-matched for common-mode noise.
Abstract:
A semiconductor package includes a semiconductor chip, an inductor applied to the semiconductor chip. The inductor includes at least one winding. A space within the at least one winding is filled with a magnetic material.
Abstract:
According to an embodiment, a transient voltage protection circuit includes a first integrated circuit including an input node, an output node, a first transient voltage protection component coupled between the input node and a reference voltage node, and an impedance element coupled between the input node and the output node. The first transient voltage protection component has a first dynamic resistance and the output node is configured to be coupled to an electrostatic discharge (ESD) protection component having a second dynamic resistance that is greater than the first dynamic resistance.
Abstract:
A common-mode suppressor for eliminating common-mode noise in high frequency differential data transmission systems and an associated method includes a long coiled differential transmission line configured to transfer data between a source and a load. The differential transmission line comprises a first conductive wire and a second conductive wire which are inductively and capacitively coupled and are laterally aligned or vertically aligned with each other. Further, the differential transmission line is matched for differential signals and un-matched for common-mode noise.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
A semiconductor package includes a semiconductor chip, an inductor applied to the semiconductor chip. The inductor includes at least one winding. A space within the at least one winding is filled with a magnetic material.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.