Abstract:
A chip package includes a chip configured to generate and/or receive a signal; a laminate substrate including a substrate integrated waveguide (SIW) for carrying the signal, the substrate integrated waveguide including a chip-to-SIW transition structure configured to couple the signal between the SIW and the chip and a SIW-to-waveguide transition structure configured to couple the signal out of the SIW or into the SIW, wherein the SIW-to-waveguide transition structure includes a waveguide aperture; and a plurality of electrical interfaces arranged about a periphery of the waveguide aperture, the plurality of electrical interfaces configured to receive the signal from the SIW-to-waveguide transition structure and output the signal from the chip package or to couple the signal to the SIW-to-waveguide transition structure and into the chip package.
Abstract:
A semiconductor device comprises a semiconductor chip having a radio-frequency circuit and a radio-frequency terminal, an external radio-frequency terminal, and a non-galvanic connection arranged between the radio-frequency terminal of the semiconductor chip and the external radio-frequency terminal, wherein the non-galvanic connection is designed to transmit a radio-frequency signal.
Abstract:
A device includes a semiconductor chip, a plurality of planar metallization layers arranged over a main surface of the semiconductor chip, and a passive component including windings, wherein each of the windings is formed in one of the plurality of planar metallization layers.
Abstract:
A semiconductor package having an antenna; and a semiconductor die which is coupled to the antenna and comprises a transmitter configured to transmit wirelessly via the antenna a wireless signal having information on a local oscillator signal to a further semiconductor package comprising a further semiconductor die.
Abstract:
A microwave device includes a semiconductor package comprising a microwave semiconductor chip and a waveguide part associated with the semiconductor package. The waveguide part is configured to transfer a microwave waveguide signal. It includes one or more pieces. The microwave device further includes a transformer element configured to transform a microwave signal from the microwave semiconductor chip into the microwave waveguide signal or to transform the microwave waveguide signal into a microwave signal for the microwave semiconductor chip.
Abstract:
A wireless communication system includes a first semiconductor module and a second semiconductor module. The first semiconductor module includes a semiconductor die connected to an antenna structure. The semiconductor die of the first semiconductor module and the antenna structure of the first semiconductor module are arranged within a common package. The semiconductor die of the first semiconductor module includes a transmitter module configured to transmit the wireless communication signal through the antenna structure of the first semiconductor module. The second semiconductor module includes a semiconductor die connected to an antenna structure. The semiconductor die of the second semiconductor module includes a receiver module configured to receive the wireless communication signal through the antenna structure of the second semiconductor module from the first semiconductor module.
Abstract:
A tire pressure monitoring system (TPMS) includes a communication interface device configured to communicate with a target TPMS sensor module. The communication interface device include a radio frequency (RF) transceiver configured to generate at least one wake-up signal; an antenna array configured to transmit each wake-up signal as a directional RF beam; a processing circuit configured to monitor for a response signal in response to the antenna array transmitting the at least one wake-up signal; and a power amplifier configured to set a power of each wake-up signal according to an adjustable power setting such that the power of each subsequent wake-up signal is increased in discrete steps until the response signal is received by the RF transceiver.
Abstract:
A packaged radar includes laminate layers, a ground plane associated with at least one of the laminate layers, a transmit antenna and a receive antenna associated with at least one of the laminate layers, and an electromagnetic band gap structure between the transmit antenna and the receive antenna for isolating the transmit antenna and the receive antenna, the electromagnetic band gap structure including elementary cells forming adjacent columns each coupled to the ground plane, and each elementary cell including a conductive planar element and a columnar element coupled to the conductive planar element.
Abstract:
A method of forming a chip arrangement is provided. The method includes: arranging a plurality of stacks on a carrier, each stack including a thinned semiconductor chip, a further layer, and a polymer layer between the further layer and the chip, each stack being arranged with the chip facing the carrier; joining the plurality of stacks with each other with an encapsulation material to form the chip arrangement; exposing the further layer; and forming a redistribution layer contacting the chips of the chip arrangement.
Abstract:
An electronic device comprising a semiconductor package having a first main surface region and a second main surface region and comprising a semiconductor chip comprising at least one chip pad in the second main surface region and a connector block comprising at least one first electrically conductive through connection and at least one second electrically conductive through connection extending with different cross-sectional areas between the first main surface region and the second main surface region and being arranged side-by-side with the semiconductor chip.