Abstract:
Examples provide for an apparatus, method, and computer program for comparing the output of sensor cells in an arrangement of sensor cells in an area A, including a set of at least two measurement units. A measurement unit includes at least two sensor cells, wherein at least one sensor cell of at least one measurement unit includes a sensitive sensor cell, which is sensitive with respect to a measured quantity. The sensor cells are intermixed with each other. The apparatus further includes means for selecting output signals of sensor cells of the arrangement and means for determining a measured quantity or determining an intact sensor cell by comparing output signals of different measurement units.
Abstract:
Embodiments relate to sensor and sensing devices, systems and methods. In an embodiment, a micro-electromechanical system (MEMS) device comprises at least one sensor element; a framing element disposed around the at least one sensor element; at least one port defined by the framing element, the at least one port configured to expose at least a portion of the at least one sensor element to an ambient environment; and a thin layer disposed in the at least one port.
Abstract:
A capacitive sensor includes a first electrode structure; a second electrode structure that is counter to the first electrode structure, wherein the second electrode structure is movable relative to the first electrode structure and is capacitively coupled to the first electrode structure to form a capacitor having a capacitance that changes with a change in a distance between the first electrode structure and second electrode structure; a signal generator configured to apply an electrical signal at an input or at an output of the capacitor to induce a voltage transient response at the output of capacitor; and a diagnostic circuit configured to detect a fault in the capacitive sensor by measuring a time constant of the first voltage transient response and detecting the fault based on the time constant and based on whether the first electrical signal is the pull-in signal or the non-pull-in signal.
Abstract:
A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
Abstract:
Embodiments relate to microelectromechanical systems (MEMS) and more particularly to membrane structures comprising pixels for use in, e.g., display devices. In embodiments, a membrane structure comprises a monocrystalline silicon membrane above a cavity formed over a silicon substrate. The membrane structure can comprise a light interference structure that, depending upon a variable distance between the membrane and the substrate, transmits or reflects different wavelengths of light. Related devices, systems and methods are also disclosed.
Abstract:
Embodiments relate to microelectromechanical systems (MEMS) and more particularly to membrane structures comprising pixels for use in, e.g., display devices. In embodiments, a membrane structure comprises a monocrystalline silicon membrane above a cavity formed over a silicon substrate. The membrane structure can comprise a light interference structure that, depending upon a variable distance between the membrane and the substrate, transmits or reflects different wavelengths of light. Related devices, systems and methods are also disclosed.
Abstract:
Embodiments relate to microelectromechanical systems (MEMS) and more particularly to membrane structures comprising pixels for use in, e.g., display devices. In embodiments, a membrane structure comprises a monocrystalline silicon membrane above a cavity formed over a silicon substrate. The membrane structure can comprise a light interference structure that, depending upon a variable distance between the membrane and the substrate, transmits or reflects different wavelengths of light. Related devices, systems and methods are also disclosed.
Abstract:
In various embodiments, a chip package is provided. The chip package may include at least one chip having a plurality of pressure sensor regions and encapsulation material encapsulating the chip.
Abstract:
Micro-electromechanical system (MEMS) devices and methods of manufacture thereof are disclosed. In one embodiment, a MEMS device includes a semiconductive layer disposed over a substrate. A trench is disposed in the semiconductive layer, the trench with a first sidewall and an opposite second sidewall. A first insulating material layer is disposed over an upper portion of the first sidewall, and a conductive material disposed within the trench. An air gap is disposed between the conductive material and the semiconductive layer.
Abstract:
A capacitive sensor includes a first conductive structure; a second conductive structure that is counter to the first conductive structure, wherein the second conductive structure is movable relative to the first conductive structure in response to an external force acting thereon, wherein the second conductive structure is capacitively coupled to the first conductive structure to form a first capacitor having a first capacitance that changes with a change in a distance between the first conductive structure and second conductive structure; a signal generator configured to apply a first electrical signal step at an input or at an output of the first capacitor to induce a first voltage transient response at the output of first capacitor; and a diagnostic circuit configured to detect a fault in the capacitive sensor by measuring a first time constant of the first voltage transient response and detecting the fault based on the first time constant.