Abstract:
Technology for transcoding avoidance is disclosed. A mobile switching center (MSC) server can decode a single radio voice call continuity (SRVCC) packet switch (PS) to circuit switched (CS) request message received from a mobility management entity (MME) that includes selected CODEC information for a selected CODEC used for a user equipment (UE) in an internet protocol (IP) Multimedia Subsystem (IMS) over long term evolution (LTE) system. The MSC server can encode the selected CODEC information for transmission to a target MSC to enable the target MSC to identify the selected CODEC for the UE to allow the selected CODEC to be used in the CS domain.
Abstract:
An apparatus of a user equipment (UE) comprises one or more baseband processors to encode a UE capability indicator to be transmitted to a policy control function (PCF) via an Access and Mobility Management Function (AMF), wherein the UE capability indicator indicates whether the UE supports or does not support a preconfigured UE policy comprising access network discovery and selection policy (ANDSP) or UE route selection policy (URSP), or both. The apparatus of a UE further can comprise a memory to store the UE capability indicator.
Abstract:
An apparatus of a user equipment (UE) comprises one or more baseband processors to encode a UE capability indicator to be transmitted to a policy control function (PCF) via an Access and Mobility Management Function (AMF), wherein the UE capability indicator indicates whether the UE supports or does not support a preconfigured UE policy comprising access network discovery and selection policy (ANDSP) or UE route selection policy (URSP), or both. The apparatus of a UE further can comprise a memory to store the UE capability indicator.
Abstract:
Technology for a radio access network (RAN) node that is operable to report user plane congestion (UPCON) is disclosed. The RAN node may include computer circuitry configured to receive, from a Core Network (CN), an information element (IE) including UPCON related Policy and Control Charging (PCC) information. The RAN node may identify a location of an UPCON event, at the RAN node, based on an UPCON event trigger included in the UPCON related PCC information. The RAN node may report Radio Access Network Congestion Information (RCI) about the UPCON event to one or more network elements in the CN.
Abstract:
Embodiments of apparatus, computer-implemented methods, systems, devices, and computer-readable media are described herein for a user equipment (“UE”) to generate, for transmission to a remote entity executing on a remote computing device in communication with the UE over an air interface of an Evolved Universal Terrestrial Radio Access Network (“EUTRAN”), a container that includes UE or base station (e.g., Evolved Node B, or “eNB”) configuration data (e.g., an inactivity time interval), or over-the-top (“OTT”) application configuration data. In embodiments, the UE may transmit the container through a logical tunnel passing through the air interface between a local processing entity executing on the computing device and the remote entity. A base station such as an eNB may be similarly configured to generate and/or transmit, to a UE, a container with UE, base station, or OTT application configuration data, through a logical tunnel passing through the air interface.
Abstract:
With the proliferation of Machine-Type Communication (MTC), an excessive use of device trigger messages in a Long Term Evolution (LTE) network can have negative effects on user equipment (UE). These effect can include a shortening of UE battery life and/or excessive signalling caused by the frequent changing from an idle mode to an active mode. An MTC Interworking Function (MTC-IWF) can be configured to determine the status of a UE to which a device trigger message is intended. If the device trigger message is low priority and the UE is in an idle state, the MTC-IWF or Mobile Management Entity (MME)/Serving GPRS Support Node (SGSN)/Mobile Switching Center (MSC) can buffer the device trigger message.
Abstract:
Technology for transcoding avoidance is disclosed. A mobile switching center (MSC) server can decode a single radio voice call continuity (SRVCC) packet switch (PS) to circuit switched (CS) request message received from a mobility management entity (MME) that includes selected CODEC information for a selected CODEC used for a user equipment (UE) in an internet protocol (IP) Multimedia Subsystem (IMS) over long term evolution (LTE) system. The MSC server can encode the selected CODEC information for transmission to a target MSC to enable the target MSC to identify the selected CODEC for the UE to allow the selected CODEC to be used in the CS domain.
Abstract:
Technology for transcoding avoidance during a single radio voice call continuity (SRVCC) procedure is disclosed. In an example, a mobile switching center (MSC) can include circuitry configured to: receive from a mobility management entity (MME) in a SRVCC packet switch (PS) to circuit switched (CS) request message, selected CODEC information for a selected CODEC used for a user equipment (UE) in an internet protocol (IP) Multimedia Subsystem (IMS) over long term evolution (LTE) system; and communicate the selected CODEC information to a target MSC to enable the target MSC to identify the selected CODEC for the UE to allow the selected CODEC to be used in the CS domain.
Abstract:
An apparatus and system of providing multi-path transmissions are described. A user equipment (UE) sends a Multi-path Policy Provisioning Request in a UE Policy Container to a policy control function (PCF). The PCF provisions a UE route selection policy (URSP) to the UE including a Multi-Path preference in an Access Type preference or multi-path parameter of a Route Selection Descriptor of a URSP rule. The Multi-Path preference indicates a preferred path over a Uu interface and Layer-2 or Layer-3 UE-to-Network Relay. The UE determines packet data unit (PDU) establishment additionally based on path availability, as well as ProSe Layer-3 UE-to-Network Relay Offload indication and ProSe Policy. The Multi-path Policy Provisioning Request is earned in a Registration Request message or UE Policy Provisioning Request message.
Abstract:
With the proliferation of Machine-Type Communication (MTC), an excessive use of device trigger messages in a Long Term Evolution (LTE) network can have negative effects on user equipment (UE). These effect can include a shortening of UE battery life and/or excessive signalling caused by the frequent changing from an idle mode to an active mode. An MTC Interworking Function (MTC-IWF) can be configured to determine the status of a UE to which a device trigger message is intended. If the device trigger message is low priority and the UE is in an idle state, the MTC-IWF or Mobile Management Entity (MME)/Serving GPRS Support Node (SGSN)/Mobile Switching Center (MSC) can buffer the device trigger message.