Differential trench fill for ease of layout design

    公开(公告)号:US11430778B2

    公开(公告)日:2022-08-30

    申请号:US16354741

    申请日:2019-03-15

    Inventor: Chen-Guan Lee

    Abstract: An integrated circuit structure comprises a plurality of structures above a substrate, wherein spacing between the structures creates a range of different open density regions from a relatively low open density region to a high open density region. A first fill material fills at least a portion of openings between the structures in at least the high open density region to provide a substantially uniform open density across the different open density regions, wherein the first fill material is patterned to include openings therein. A second fill material fills the openings between the structures in the low open density region, and fills the openings in the first fill material in the at least the high open density region.

    Transistor with thermal performance boost

    公开(公告)号:US10559688B2

    公开(公告)日:2020-02-11

    申请号:US16081215

    申请日:2016-04-01

    Abstract: Techniques are disclosed for forming a transistor with enhanced thermal performance. The enhanced thermal performance can be derived from the inclusion of thermal boost material adjacent to the transistor, where the material can be selected based on the transistor type being formed. In the case of PMOS devices, the adjacent thermal boost material may have a high positive linear coefficient of thermal expansion (CTE) (e.g., greater than 5 ppm/° C. at around 20° C.) and thus expand as operating temperatures increase, thereby inducing compressive strain on the channel region of an adjacent transistor and increasing carrier (e.g., hole) mobility. In the case of NMOS devices, the adjacent thermal boost material may have a negative linear CTE (e.g., less than 0 ppm/° C. at around 20° C.) and thus contract as operating temperatures increase, thereby inducing tensile strain on the channel region of an adjacent transistor and increasing carrier (e.g., electron) mobility.

    Transistor with inner-gate spacer

    公开(公告)号:US10431661B2

    公开(公告)日:2019-10-01

    申请号:US15778304

    申请日:2015-12-23

    Abstract: Techniques are disclosed for forming a transistor with one or more additional spacers, or inner-gate spacers, as referred to herein. The additional spacers may be formed between the gate and original spacers to reduce the parasitic coupling between the gate and the source/drain, for example. In some cases, the additional spacers may include air gaps and/or dielectric material (e.g., low-k dielectric material). In some cases, the gate may include a lower portion, a middle portion, and an upper portion. In some such cases, the lower and upper portions of the gate may be wider between the original spacers than the middle portion of the gate, which may be as a result of the additional spacers being located between the middle portion of the gate and the original spacers. In some such cases, the gate may approximate an I-shape, -shape, -shape, ⊥-shape, L-shape, or ┘-shape, for example.

    Pillar resistor structures for integrated circuitry

    公开(公告)号:US09748327B2

    公开(公告)日:2017-08-29

    申请号:US15129794

    申请日:2014-06-18

    Abstract: Integrated circuit structures including a pillar resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor over the substrate. Following embodiments herein, a small resistor footprint may be achieved by orienting the resistive length orthogonally to the substrate surface. In embodiments, the vertical resistor pillar is disposed over a first end of a conductive trace, a first resistor contact is further disposed on the pillar, and a second resistor contact is disposed over a second end of a conductive trace to render the resistor footprint substantially independent of the resistance value. Formation of a resistor pillar may be integrated with a replacement gate transistor process by concurrently forming the resistor pillar and sacrificial gate out of a same material, such as polysilicon. Pillar resistor contacts may also be concurrently formed with one or more transistor contacts.

    Hybrid finfet structure with bulk source/drain regions

    公开(公告)号:US11075286B2

    公开(公告)日:2021-07-27

    申请号:US16344003

    申请日:2016-12-12

    Abstract: A transistor including a source and a drain each formed in a substrate; a channel disposed in the substrate between the source and drain, wherein the channel includes opposing sidewalls with a distance between the opposing sidewalls defining a width dimension of the channel and wherein the opposing sidewalls extend a distance below a surface of the substrate; and a gate electrode on the channel. A method of forming a transistor including forming a source and a drain in an area of a substrate; forming a source contact on the source and a drain contact on the drain; after forming the source contact and the drain contact, forming a channel in the substrate in an area between the source and drain, the channel including a body having opposing sidewalls separated by a length dimension; and forming a gate contact on the channel.

    Resistor between gates in self-aligned gate edge architecture

    公开(公告)号:US10964690B2

    公开(公告)日:2021-03-30

    申请号:US16474896

    申请日:2017-03-31

    Abstract: Techniques are disclosed for forming semiconductor structures including resistors between gates on self-aligned gate edge architecture. A semiconductor structure includes a first semiconductor fin extending in a first direction, and a second semiconductor fin adjacent to the first semiconductor fin, extending in the first direction. A first gate structure is disposed proximal to a first end of the first semiconductor fin and over the first semiconductor fin in a second direction, orthogonal to the first direction, and a second gate structure is disposed proximal to a second end of the first semiconductor fin and over the first semiconductor fin in the second direction. A first structure comprising isolation material is centered between the first and second semiconductor fins. A second structure comprising resistive material is disposed in the first structure, the second structure extending at least between the first gate structure and the second gate structure.

    Ultra-scaled fin pitch having dual gate dielectrics

    公开(公告)号:US10784378B2

    公开(公告)日:2020-09-22

    申请号:US16318108

    申请日:2016-09-30

    Abstract: Ultra-scaled fin pitch processes having dual gate dielectrics are described. For example, a semiconductor structure includes first and second semiconductor fins above a substrate. A first gate structure includes a first gate electrode over a top surface and laterally adjacent to sidewalls of the first semiconductor fin, a first gate dielectric layer between the first gate electrode and the first semiconductor fin and along sidewalls of the first gate structure, and a second gate dielectric layer between the first gate electrode and the first gate dielectric layer and along the first gate dielectric layer along the sidewalls of the first gate electrode. A second gate structure includes a second gate electrode over a top surface and laterally adjacent to sidewalls of the second semiconductor fin, and the second gate dielectric layer between the second gate electrode and the second semiconductor fin and along sidewalls of the second gate electrode.

Patent Agency Ranking