Abstract:
A retention apparatus for a shielded cable is described. In one embodiment, the apparatus comprises a substrate having a ground; a connector coupled to the substrate; a cable shielded with a conductive material and having an end connectable to the connector to electrically connect with the connector; an electrically conductive material coupled to the ground of the substrate; and a grounding retention mechanism to cause the electrically conductive material to electrically connect the cable to the ground of the substrate by applying a force to the cable shield.
Abstract:
A system, hybrid common mode choke, and method are described herein. The system includes a differential signal transmitter and a differential signal receiver. A differential signal transmitter ground and a differential signal receiver ground are electrically disconnected in a manner that enables a common mode filter. The transmitter ground and the receiver ground may be coupled using an inductor, a resistor, a capacitor, or any combination thereof.
Abstract:
Electronic device packages utilizing a stiffener coupled to a substrate with a magnetic lossy bonding layer to attenuate or absorb electromagnetic signals such as radio frequency interference (RFI) along with related systems and method are disclosed.
Abstract:
Electronic device packages utilizing a stiffener coupled to a substrate with a magnetic lossy bonding layer to attenuate or absorb electromagnetic signals such as radio frequency interference (RFI) along with related systems and method are disclosed.
Abstract:
Techniques for focusing the energy radiated by a wireless power transmitting unit are described. An example power transmitting unit includes a transmit coil configured to generate a magnetic field to wirelessly power a device within an active wireless charging area. The power transmitting unit also includes a power generating circuitry to deliver current to the transmit coil to generate the magnetic field. The power transmitting unit also includes a ferrite structure disposed below the transmit coil, the ferrite structure comprising a flat sheet and a projection of ferrite material projecting above the flat sheet.
Abstract:
Techniques for focusing the energy radiated by a wireless power transmitting unit are described. An example power transmitting unit includes a transmit coil configured to generate a magnetic field to wirelessly power a device within an active wireless charging area. The power transmitting unit also includes a power generating circuitry to deliver current to the transmit coil to generate the magnetic field. The power transmitting unit also includes a patch array disposed in parallel with the transmit coil to reduce the strength of the magnetic field at frequencies outside of the operating frequency during operation of the power transmitting unit.
Abstract:
Techniques for noise reduction are described herein. The techniques include an apparatus for noise reduction including a voltage tuner to adjust a voltage swing for a signal line in a differential signal line pair. The apparatus may also include a timing module to adjust a timing skew between the differential signal line pair, wherein the voltage swing and timing skew adjustment introduce a common mode noise in the differential signal line pair to reduce a radio frequency interference (RFI) noise coupling.
Abstract:
Techniques for noise reduction are described herein. The techniques include an apparatus for noise reduction including a voltage tuner to adjust a voltage swing for a signal line in a differential signal line pair. The apparatus may also include a timing module to adjust a timing skew between the differential signal line pair, wherein the voltage swing and timing skew adjustment introduce a common mode noise in the differential signal line pair to reduce a radio frequency interference (RFI) noise coupling.
Abstract:
Techniques for focusing the energy radiated by a wireless power transmitting unit are described. An example power transmitting unit includes a transmit coil configured to generate a magnetic field to wirelessly power a device within an active wireless charging area. The power transmitting unit also includes a power generating circuitry to deliver current to the transmit coil to generate the magnetic field. The power transmitting unit also includes a ferrite structure disposed below the transmit coil, the ferrite structure comprising a flat sheet and a projection of ferrite material projecting above the flat sheet.
Abstract:
Semiconductor packages and a method of forming a semiconductor package are described. The semiconductor package has a foundation layer, a conductive layer formed in the foundation layer, and a magnetic layer formed between the conductive and the foundation layer. The conductive layer and the magnetic layer are coupled to form a low-profile inductor shield. The semiconductor package also has a dielectric layer formed between the magnetic and foundation layer. The foundation layer is mounted between a motherboard and a semiconductor die, where the foundation layer is attached to the motherboard with solder balls. Accordingly, the low-profile inductor shield may include a z-height that is less than a z-height of the solder balls. The low-profile inductor shield may have solder pads that are coupled to the conductive layer. The foundation layer may include at least one of voltage regulator and inductor, where the inductor is located above the low-profile inductor shield.