Abstract:
In one embodiment, a flash sharing controller is to enable a plurality of components of a platform to share a flash memory. The flash sharing controller may include: a flash sharing class layer including a configuration controller to configure the plurality of components to be flash master devices and configure a flash sharing slave device for the flash memory; and a physical layer coupled to the flash sharing class layer to communicate with the plurality of components via a bus. Other embodiments are described and claimed.
Abstract:
An apparatus is described herein. The apparatus includes a Universal Serial Bus (USB) component and a controller interface. The controller interface is to allocate register space for interfacing with the USB component and the USB component is virtualized into multiple instantiations. The apparatus also includes a secure environment, and the secure environment further virtualizes the multiple instantiations such that the multiple instantiations are owned by the secure environment.
Abstract:
An apparatus for retimer configuration and control is described herein. The apparatus includes at least one retimer. The is to receive an inband low frequency periodic signal (LFPS), and to send an inband LFPS based pulse width modulation message (LBPM) in response to the inband LFPS. The retimer is configured by decoding the LBPM.
Abstract:
An interface for low power, high bandwidth communications between units in a device in provided herein. The interface comprises a USB 3.0 system interface and a SuperSpeed inter-chip (SSIC) protocol adaptor configured to facilitate communications between the USB3.0 system interface and an M-PHY interface, wherein the SSIC is configured to issue remote register access protocol (RRAP) commands through a local M-PHY to a remote M-PHY in a low speed burst mode.
Abstract:
Apparatuses relating to periodic Universal Serial Bus (USB) transaction scheduling at fractional bus intervals are described. In one embodiment, an apparatus includes a receptacle to receive a plug of a first device and a second device; a transceiver circuit coupled to the receptacle; and a controller circuit to: switch between a first mode for a first class of data transfers and a second mode for a second class of data transfers, wherein the first class preempts the second class of data transfers, schedule a data transfer with the transceiver circuit for a first endpoint of the first device at a first service interval of a bus interval when in the first mode, and schedule a data transfer with the transceiver circuit for a second, different endpoint of the second device at a second service interval that is smaller than the first service interval when in the first mode.
Abstract:
An example apparatus includes: a host controller offload capability detector to determine that a media stream offload capability is available in the peripheral interface host controller; a media stream offload arbiter to send a media stream offload request to a media processor manager based on the media stream offload capability and based on a peripheral device being connected to the peripheral interface host controller; and an endpoint mapper to generate an endpoint table entry corresponding to the peripheral device, the endpoint table entry to assign a first communication interface of the peripheral interface host controller to transfer a media stream corresponding to the peripheral device between the media processor and the peripheral interface host controller without the media stream being routed to an application processor that is in circuit with the peripheral interface host controller and in circuit with the media processor.
Abstract:
Particular embodiments described herein provide for an electronic device that can receive data from an operating system in an electronic device, where the data is related to hardware that is in communication with the electronic device through a multimodal interface and communicate the data and/or related data to a local policy manager, where the local policy manager is in communication with the multimodal interface. The multimodal interface can be configured to support power transfers, directionality, and multiple input/output (I/O) protocols on the same interface.
Abstract:
An apparatus for retimer configuration and control is described herein. The apparatus includes at least one retimer. The is to receive an inband low frequency periodic signal (LFPS), and to send an inband LFPS based pulse width modulation message (LBPM) in response to the inband LFPS. The retimer is configured by decoding the LBPM.
Abstract:
Embodiments of the present disclosure are directed toward a universal serial bus (USB) device and a USB host controller. The USB device and USB host controller may be configured to couple to one another via a USB link that may include a high-speed data line and a low-speed data line. The USB device may then transmit, via the high-speed data line, an indication of a digital image to the USB host controller. Other embodiments may be described and/or claimed.
Abstract:
An interface for low power, high bandwidth communications between units in a device in provided herein. The interface comprises a USB 3.0 system interface and a SuperSpeed inter-chip (SSIC) protocol adaptor configured to facilitate communications between the USB3.0 system interface and an M-PHY interface, wherein the SSIC is configured to issue remote register access protocol (RRAP) commands through a local M-PHY to a remote M-PHY in a low speed burst mode.