Abstract:
Technologies for manufacturing spin transfer torque memory (STTM) elements are disclosed. In some embodiments, the technologies include methods for interrupting the electrical continuity of a re-deposited layer that may form on one or more sidewalls of an STTM element during its formation. Devices and systems including such STTM elements are also described.
Abstract:
Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF). The techniques can benefit, for example, magnetic contacts having magnetic directions that are substantially in-line or substantially in-plane with the layers of the MTJ stack.
Abstract:
Techniques are disclosed for forming a spin-transfer torque memory (STTM) element having an annular contact to reduce critical current requirements. The techniques reduce critical current requirements for a given magnetic tunnel junction (MTJ), because the annular contact reduces contact size and increases local current density, thereby reducing the current needed to switch the direction of the free magnetic layer of the MTJ. In some cases, the annular contact surrounds at least a portion of an insulator layer that prevents the passage of current. In such cases, current flows through the annular contact and around the insulator layer to increase the local current density before flowing through the free magnetic layer. The insulator layer may comprise a dielectric material, and in some cases, is a tunnel material, such as magnesium oxide (MgO). In some cases, a critical current reduction of at least 10% is achieved for a given MTJ.
Abstract:
Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF). The techniques can benefit, for example, magnetic contacts having magnetic directions that are substantially in-line or substantially in-plane with the layers of the MTJ stack.
Abstract:
Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.