Abstract:
A multilayer free magnetic layer structure for spin-based magnetic memory is provided herein. The multilayer free magnetic structure is employed in a magnetic tunnel junction (MTJ) and includes antiferromagnetically coupled magnetic layers. In some cases, the antiferromagnetic coupling is mediated by RKKY interaction with a Ru, Ir, Mo, Cu, or Rh spacer layer. In some cases, low damping magnetic materials, such as CoFeB, FeB, or CoFeBMo are used for the antiferromagnetically coupled magnetic layers. By employing the multilayer free magnetic structure for the MTJ as variously described herein, the critical or switching current can be significantly reduced compared to, for example, an MTJ employing a single-layer free magnetic layer. Thus, higher device efficiencies can be achieved. In some cases, the magnetic layers of the multilayer free magnetic structure are perpendicular magnets, which can be employed, for example, in perpendicular spin-orbit torque (pSOT) memory devices.
Abstract:
Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF). The techniques can benefit, for example, magnetic contacts having magnetic directions that are substantially in-line or substantially in-plane with the layers of the MTJ stack.
Abstract:
Techniques are disclosed for fabricating a self-aligned spin-transfer torque memory (STTM) device with a dot-contacted free magnetic layer. In some embodiments, the disclosed STTM device includes a first dielectric spacer covering sidewalls of an electrically conductive hardmask layer that is patterned to provide an electronic contact for the STTM's free magnetic layer. The hardmask contact can be narrower than the free magnetic layer. The first dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer. In some embodiments, the STTM further includes an optional second dielectric spacer covering sidewalls of its free magnetic layer. The second dielectric spacer can be utilized in patterning the STTM's fixed magnetic layer and may serve, at least in part, to protect the sidewalls of the free magnetic layer from redepositing of etch byproducts during such patterning, thereby preventing electrical shorting between the fixed magnetic layer and the free magnetic layer.
Abstract:
Techniques are disclosed for forming integrated circuit structures including a magnetic tunnel junction (MTJ), such as spin-transfer torque memory (STTM) devices, having magnetic contacts. The techniques include incorporating an additional magnetic layer (e.g., a layer that is similar or identical to that of the magnetic contact layer) such that the additional magnetic layer is coupled antiferromagnetically (or in a substantially antiparallel manner). The additional magnetic layer can help balance the magnetic field of the magnetic contact layer to limit parasitic fringing fields that would otherwise be caused by the magnetic contact layer. The additional magnetic layer may be antiferromagnetically coupled to the magnetic contact layer by, for example, including a nonmagnetic spacer layer between the two magnetic layers, thereby creating a synthetic antiferromagnet (SAF). The techniques can benefit, for example, magnetic contacts having magnetic directions that are substantially in-line or substantially in-plane with the layers of the MTJ stack.
Abstract:
A perpendicular spin transfer torque memory (pSTTM) device incorporates a magnetic tunnel junction (MTJ) device having a free magnetic stack that includes a plurality of magnetic layers interleaved with a plurality of non-magnetic insert layers. The layers are arranged such that the topmost and bottommost layers are magnetic layers. The stacked design decreases the damping of the MTJ free magnetic stack, beneficially reducing the write current required to write to the pSTTM device. The stacked design further increases the interface anisotropy, thereby beneficially improving the stability of the pSTTM device. The non-magnetic interface layer may include tantalum, molybdenum, tungsten, hafnium, or iridium, or a binary alloy containing at least two of tantalum, molybdenum, tungsten hafnium, or iridium.
Abstract:
Technologies for manufacturing spin transfer torque memory (STTM) elements are disclosed. In some embodiments, the technologies include methods for interrupting the electrical continuity of a re-deposited layer that may form on one or more sidewalls of an STTM element during its formation. Devices and systems including such STTM elements are also described.
Abstract:
Techniques are disclosed for enhancing performance of a perpendicular magnetic tunnel junction (MTJ) by implementing an additional ferromagnetic layer therein. The additional ferromagnetic layer can be implemented, for example, in or otherwise proximate either the fixed ferromagnetic layer or the free ferromagnetic layer of the perpendicular MTJ. In some embodiments, the additional ferromagnetic layer is implemented with a non-magnetic spacer, wherein the thickness of the additional ferromagnetic layer and/or spacer can be adjusted to sufficiently balance the energy barrier between parallel and anti-parallel states of the perpendicular MTJ. In some embodiments, the additional ferromagnetic layer is configured such that its magnetization is opposite that of the fixed ferromagnetic layer.
Abstract:
Techniques are disclosed for forming integrated circuit (IC) devices that include ferroelectric field-effect transistors (FE-FETs) having a top gate and a bottom gate (or, generally, a dual-gate configuration). The disclosed FE-FET devices may be formed in the back end of the IC structure and may be implemented with various materials that exhibit ferroelectric properties when processed at temperatures within the thermal budget of the back-end processing. The disclosed back-end FE-FET devices can achieve greater than two resistance states, depending on the direction of poling of the top and bottom gates, thereby enabling the formation of 3-state and 4-state memory devices, for example. Additionally, as will be appreciated in light of this disclosure, the disclosed back-end FE-FET devices can free up floor space in the front-end, thereby providing space for additional devices in the front-end.
Abstract:
Techniques are disclosed for carrying out ferromagnetic resonance (FMR) testing on whole wafers populated with one or more buried magnetic layers. The techniques can be used to verify or troubleshoot processes for forming the buried magnetic layers, without requiring the wafer to be broken. The techniques can also be used to distinguish one magnetic layer from others in the same stack, based on a unique frequency response of that layer. One example methodology includes moving a wafer proximate to a waveguide (within 500 microns, but without shorting), energizing a DC magnetic field near the target measurement point, applying an RF input signal through the waveguide, collecting resonance spectra of the frequency response of the waveguide, and decomposing the resonance spectra into magnetic properties of the target layer. One or both of the DC magnetic field and RF input signal can be swept to generate a robust set of resonance spectra.
Abstract:
Techniques are disclosed for forming a spin-transfer torque memory (STTM) element having an annular contact to reduce critical current requirements. The techniques reduce critical current requirements for a given magnetic tunnel junction (MTJ), because the annular contact reduces contact size and increases local current density, thereby reducing the current needed to switch the direction of the free magnetic layer of the MTJ. In some cases, the annular contact surrounds at least a portion of an insulator layer that prevents the passage of current. In such cases, current flows through the annular contact and around the insulator layer to increase the local current density before flowing through the free magnetic layer. The insulator layer may comprise a dielectric material, and in some cases, is a tunnel material, such as magnesium oxide (MgO). In some cases, a critical current reduction of at least 10% is achieved for a given MTJ.