Abstract:
A ferrule for a multilayer waveguide connector includes a face having mechanical alignment slots arranged in a bidirectional lattice structure, the mechanical alignment slots including first slots disposed in a first direction, the first slots configured to respectively receive one end of waveguide layers, and second slots disposed in a second direction different from the first direction, the second slots configured to respectively receive protrusions transverse from a main surface of the waveguide layers.
Abstract:
A ferrule for a multilayer waveguide connector includes a face having mechanical alignment slots arranged in a bidirectional lattice structure, the mechanical alignment slots including first slots disposed in a first direction, the first slots configured to respectively receive one end of waveguide layers, and second slots disposed in a second direction different from the first direction, the second slots configured to respectively receive protrusions transverse from a main surface of the waveguide layers.
Abstract:
Embodiments include methods for connecting a stack of waveguide layers to a face of a ferrule presenting a mechanical alignment structure. The method includes bringing a ferrule in an alignment position and dispersing glue in cavities of mechanical alignment structure for each waveguide layer. The method also includes sliding the waveguide layer into the cavities, inserting a comb-like tool in the ferrule so that the tool presses the waveguide layer into the cavities, glue curing the ferrule, and adding a cover to the ferrule. The mechanical alignment structure comprises mechanical alignment slots arranged in a bidirectional lattice structure.
Abstract:
A computer program product or hardware description language (“HDL”) design structure in a computer-aided design system for generating a functional design model of an integrated circuitry structure including generating a functional representation of at least first and second regions of the integrated circuitry structure, generating a functional representation of an optical layer comprising optical waveguides, and generating a functional representation of a heat-conductive material for transferring heat from at least the second region through the optical layer to a heat sink.
Abstract:
A ferrule for a multilayer waveguide connector includes a face having mechanical alignment slots arranged in a bidirectional lattice structure, the mechanical alignment slots including first slots disposed in a first direction, the first slots configured to respectively receive one end of waveguide layers, and second slots disposed in a second direction different from the first direction, the second slots configured to respectively receive protrusions transverse from a main surface of the waveguide layers.
Abstract:
A ferrule for a multilayer waveguide connector includes a face having mechanical alignment slots arranged in a bidirectional lattice structure, the mechanical alignment slots including first slots disposed in a first direction, the first slots configured to respectively receive one end of waveguide layers, and second slots disposed in a second direction different from the first direction, the second slots configured to respectively receive protrusions transverse from a main surface of the waveguide layers.
Abstract:
A ferrule for a multilayer waveguide connector includes a face having mechanical alignment slots arranged in a bidirectional lattice structure, the mechanical alignment slots including first slots disposed in a first direction, the first slots configured to respectively receive one end of waveguide layers, and second slots disposed in a second direction different from the first direction, the second slots configured to respectively receive protrusions transverse from a main surface of the waveguide layers.
Abstract:
A method in a computer-aided design system for generating a functional design model of an integrated circuitry structure including generating a functional representation of at least first and second regions of the integrated circuitry structure, generating a functional representation of an optical layer comprising optical waveguides, and generating a functional representation of a heat-conductive material for transferring heat from at least the second region through the optical layer to a heat sink.
Abstract:
A method in a computer-aided design system for generating a functional design model of an integrated circuitry structure including generating a functional representation of at least first and second regions of the integrated circuitry structure, generating a functional representation of an optical layer comprising optical waveguides, and generating a functional representation of a heat-conductive material for transferring heat from at least the second region through the optical layer to a heat sink.