摘要:
A method for forming multi-depth apertures in a substrate is provided. The method includes first providing a pad stack atop a surface of a substrate having regions for forming apertures therein, the pad stack includes at least a top patterned masking layer. Next, at least one of the regions of the substrate is blocked with a first block mask, while leaving at least one other region of the substrate unblocked. A plurality of first apertures having a first depth is then formed in the unblocked region of the substrate using the patterned masking layer to define the plurality of first apertures. The first block mask is then removed; and thereafter a plurality of second apertures having a second depth is formed in regions of the substrate that were previously blocked by the first block mask using the same patterned masking layer to define the second apertures, while simultaneously increasing the first depth such that the first depth is deeper than the second depth.
摘要:
A memory device structure is provided in which the array oxide layer has a thickness that is greater than the thickness of the support oxide layer. Specifically, the structure comprises a semiconductor substrate having a gate oxide layer formed thereon, said substrate including array regions and support regions, said array regions include at least one patterned gate conductor, said patterned gate conductor having a polysilicon layer formed on said gate oxide layer, a conductor material layer formed on said polysilicon layer, and a nitride cap layer formed on said conductor material layer, said nitride cap layer and said conductor material layer having spacers formed on sidewalls thereof and said polysilicon layer having an array oxide layer formed on sidewalls thereof, said spacers being substantially flush with the oxide sidewalls, said support regions include at least one patterned gate conductor, said patterned gate conductor having a polysilicon layer formed on said gate oxide layer, a conductor material layer formed on said polysilicon layer, and a nitride cap layer on said conductor material layer, said polysilicon layer having a support oxide layer formed on sidewalls thereof, wherein said array oxide layer has a thickness that is greater than said support oxide layer.
摘要:
A self-aligned shallow trench isolation region for a memory cell array is formed by etching a plurality of vertical deep trenches in a substrate and coating the trenches with an oxidation barrier layer. The oxidation barrier layer is recessed in portions of the trenches to expose portions of the substrate in the trenches. The exposed portions of the substrate are merged by oxidization into thermal oxide regions to form the self-aligned shallow trench isolation structure which isolates adjacent portions of substrate material. The merged oxide regions are self-aligned as they automatically aligned to the edges of the deep trenches when merged together to define the location of the isolation region within the memory cell array during IC fabrication. The instant self-aligned shallow trench isolation structure avoids the need for an isolation mask to separate or isolate the plurality of trenches within adjacent active area rows on a single substrate.
摘要:
An integrated circuit including a dynamic random access memory (DRAM) array is disclosed herein in which a DRAM cell includes a storage capacitor within a deep trench, a transistor having a channel extending along a sidewall of the deep trench and a gate conductor within the deep trench, and a wordline contacting the gate conductor from above, wherein the wordline has a centerline which is offset from the centerline of the gate conductor. The DRAM cell-further includes active area extending from the transistor channel, and a bitline contact to the active area which is bordered by an insulating spacer of the sidewall of the wordline.
摘要:
An anti-fuse structure that can be programmed at low voltage and current and which potentially consumes very little chip spaces and can be formed interstitially between elements spaced by a minimum lithographic feature size is formed on a composite substrate such as a silicon-on-insulator wafer by etching a contact through an insulator to a support semiconductor layer, preferably in combination with formation of a capacitor-like structure reaching to or into the support layer. The anti-fuse may be programmed either by the selected location of conductor formation and/or damaging a dielectric of the capacitor-like structure. An insulating collar is used to surround a portion of either the conductor or the capacitor-like structure to confine damage to the desired location. Heating effects voltage and noise due to programming currents are effectively isolated to the bulk silicon layer, permitting programming during normal operation of the device. Thus the potential for self-repair without interruption of operation is realized.
摘要:
The vertical MOSFET structure used in forming dynamic random access memory comprises a gate stack structure comprising one or more silicon nitride spacers; a vertical gate polysilicon region disposed in an array trench, wherein the vertical gate polysilicon region comprises one or more silicon nitride spacers; a bitline diffusion region; a shallow trench isolation region bordering the array trench; and wherein the gate stack structure is disposed on the vertical gate polysilicon region such that the silicon nitride spacers of the gate stack structure and vertical gate polysilicon region form a borderless contact with both the bitline diffusion region and shallow trench isolation region. The vertical gate polysilicon is isolated from both the bitline diffusion and shallow trench isolation region by the nitride spacer, which provides reduced bitline capacitance and reduced incidence of bitline diffusion to vertical gate shorts.
摘要:
Two different gate conductor dielectric caps are used in the array and support device regions so that the bitline contact can be fabricated in the array region, but a thinner hard mask can be used for better linewidth control in the support device region. The thinner dielectric cap is made into dielectric spacers in the array device regions during support mask etching. These dielectric spacers allow for the array gate conductor resist line to be made smaller than the final gate conductor linewidth. This widens the array gate conductor processing window. The second dielectric cap layer improves linewidth control for the support devices and the array devices. Two separate gate conductor lithography steps and gate conductor dielectric etches are carried out in the present invention to optimize the gate conductor linewidth control in the array and support device regions. The gate conductors in the array and support devices regions are etched simultaneously to reduce production cost. In additional embodiments of the invention, dual workfunction support device transistors with or without salicide can be fabricated with an array including borderless contacts.
摘要:
A method and structure for a dynamic random access memory device comprising a storage trench, a storage conductor within the storage trench, a lip strap connected to the storage conductor, and a control device electrically connected to the storage conductor through the lip strap. The trench contains a corner adjacent the control device and the lip strap and has a conductor surrounding the corner. The control device has a control device conductive region adjacent the trench and the lip strap and has a conductor extending along a side of the trench and along a portion of the control device conductive region. In addition, the device can have a collar insulator along a top portion of the trench, wherein the lip strap includes a conductor extending from a top of the collar to a top of the trench. The lip strap can also extend along a surface of the device adjacent the trench and perpendicular to the trench. A node dielectric, lining the trench where the lip strap surrounds an upper portion of the node dielectric, is adjacent the top portion of the trench and can have a trench top oxide where the lip strap extends into the trench top oxide and forms an inverted U-shaped structure. Further, the lip strap can include a conductor extending along two perpendicular portions of a top corner of the trench.
摘要:
An isolation region for a memory array in which the isolation region includes at least one trench region having sidewalls that extend to a bottom surface and a slit region formed beneath the final trench region, wherein the slit region is narrower than the overlying trench regions and has a void formed intentionally therein is provided.
摘要:
A method for forming a thermally stable ohmic contact structure that includes a region of monocrystalline semiconductor and a region of polycrystalline semiconductor. At least one region of dielectric material is formed between at least a portion of the region of monocrystalline semiconductor and the region of polycrystalline semiconductor, thereby controlling grain growth of the polycrystalline semiconductor.