摘要:
A cooling mechanism includes a first heat exchanger, a first fluid-flow port, and a second fluid-flow port. The first heat exchanger includes a forced-fluid driver and is configured to pump heat from inside an enclosed area to outside of the enclosed area. Furthermore, the first fluid-flow port is configured to accommodate a first fluid flow into the enclosed area and the second fluid-flow port is configured to accommodate a second fluid flow from the enclosed area. Note that the first fluid-flow port and the second fluid-flow port are approximately coplanar. In addition, a given fluid-flow port, which may be either or both of the fluid-flow ports, is tapered to have an associated cross-sectional area which is smaller at an edge of the given fluid-flow port that is proximate to the outside of the enclosed area than at an edge of the given fluid-flow port that is proximate to the inside of the enclosed area.
摘要:
A cooling mechanism includes a first heat exchanger, a first fluid-flow port, and a second fluid-flow port. The first heat exchanger includes a forced-fluid driver and is configured to pump heat from inside an enclosed area to outside of the enclosed area. Furthermore, the first fluid-flow port is configured to accommodate a first fluid flow into the enclosed area and the second fluid-flow port is configured to accommodate a second fluid flow from the enclosed area. Note that the first fluid-flow port and the second fluid-flow port are approximately coplanar. In addition, a given fluid-flow port, which may be either or both of the fluid-flow ports, is tapered to have an associated cross-sectional area which is smaller at an edge of the given fluid-flow port that is proximate to the outside of the enclosed area than at an edge of the given fluid-flow port that is proximate to the inside of the enclosed area.
摘要:
An electronic device can be provided with a housing having at least one wall defining a cavity and a flow sensor at least partially contained within the cavity. The flow sensor may be configured to detect a flow characteristic related to the flow of a fluid through a first portion of the cavity. The electronic device may also include a processor configured to alter a performance characteristic of the electronic device based on the detected flow characteristic.
摘要:
An electronic device can be provided with a first housing at least partially containing a first electronic component, a second housing, and a hinge assembly coupled to the first housing and the second housing. The hinge assembly may be configured to dissipate heat generated by the first electronic component away from the first housing. In some embodiments, the hinge assembly may be configured to dissipate heat generated by the first electronic component away from the first housing and on to the second housing. The second housing may include a heat spreader for dissipating the heat from the hinge assembly throughout the second housing.
摘要:
Embodiments of a device are described. This device includes an integrated circuit and a heat spreader coupled to the integrated circuit. This heat spreader includes a first layer of an allotrope of carbon. Note that the allotrope of carbon has an approximately face-centered-cubic crystal structure. Furthermore, the allotrope of carbon has a thermal conductivity greater than a first pre-determined value and a specific heat greater than a second pre-determined value.
摘要:
Embodiments of a computer system are described. This computer system includes a power source that is coupled to a heat pipe, where the power source includes an integrated circuit. This heat pipe may contain a liquid coolant that has a density greater than a first pre-determined value at room temperature. A pump is coupled to the heat pipe is configured to circulate the liquid coolant through the heat pipe. Furthermore, a heat exchanger coupled to the heat pipe is configured to transfer heat from the heat pipe to an environment external to the computer system.
摘要:
An electronic device can be provided with a first housing at least partially containing a first electronic component, a second housing, and a hinge assembly coupled to the first housing and the second housing. The hinge assembly may be configured to dissipate heat generated by the first electronic component away from the first housing. In some embodiments, the hinge assembly may be configured to dissipate heat generated by the first electronic component away from the first housing and on to the second housing. The second housing may include a heat spreader for dissipating the heat from the hinge assembly throughout the second housing.
摘要:
An electronic device can be provided with a heat-generating component, a heat-dissipating component, and a thermoelectric cooling component. The thermoelectric cooling component may be configured to create a temperature difference between the heat-generating component and the heat-dissipating component. In some embodiments, the thermoelectric cooling component is configured to use the Peltier effect to create the temperature difference. In some embodiments, the thermoelectric cooling component may be positioned proximate to a hotspot of the heat-generating component.
摘要:
A cooling system, the system comprises a housing having an inlet and an outlet, a liquid to be flown from the inlet into the housing and out of outlet to exit the housing. The housing further has an interior portion for an electronic device to reside therein and a vibration transducer coupling to the housing. The liquid is flown across the electronic device to dissipate heat from the electronic device. The vibration transducer causes turbulent or agitation in the liquid as the liquid is flown across the electronic device.
摘要:
A memory module having a packaging cover to encapsulate a board having multiple separate chips, which dynamically generate varying amounts heat. The packaging cover provides localized heat dissipation among the multiple separate memory chips. The separate chips are interconnected to the board via a set of solder balls. The packaging cover further provides a rigid encapsulation of the board and chips. In one embodiment, the memory module includes a thermally conductive substance displaced within the packaging cover to conduct heat from the separate chips to the packaging cover. In one embodiment, a top cover and bottom cover of the packaging cover are assembled with a separate frame to secure a coupling between the top and bottom covers of the packaging cover. In one embodiment, the frame includes grooves to receive notches of a module connector coupled to a motherboard. In one embodiment, the frame includes an aperture for receiving connections to thermal solutions external to the packaging cover.