摘要:
The present invention relates to a method for forming an anlog capacitor on a semiconductor substrate. The method comprises forming a field oxide over a portion of the substrate, and forming a polysilicon layer over the field oxide layer, and subsequently forming a silicide over the polysilicon layer. A first interlayer dielectric layer is formed over the substrate, and a capacitor masking pattern is formed. The first interlayer dielectric is etched using the capacitor masking pattern as a mask and the silicide layer as an etch stop, and a thin dielectric is formed over the substrate. A contact masking pattern is formed over the substrate, and a subsequent etch is performed on the thin dielectric and the first interlayer dielectric using the silicide and substrate as an etch stop. A metal layer is deposited over the substrate, and is subsequently planarized, thereby defining an analog capacitor.
摘要:
An integrated circuit includes a substrate having a semiconducting surface, and at least one isolation capacitor on the surface. The capacitor includes a bottom electrically conductive plate in or on the surface, a multi-layer dielectric comprising stack over the bottom plate, and a top electrically conductive plate formed over the dielectric stack. The dielectric stack comprises at least one layer of silicon dioxide and at least one layer of silicon nitride, wherein the layer of silicon nitride is located immediately below or immediately above the top plate.
摘要:
A zero temperature coefficient (ZTC) capacitor including a silicon dioxide dielectric layer with a phosphorus density between 1.7×1020 atoms/cm3 and 2.3×1020 atoms/cm3. An integrated circuit containing a ZTC capacitor including a silicon dioxide dielectric layer with a phosphorus density between 1.7×1020 atoms/cm3 and 2.3×1020 atoms/cm3. A process of forming an integrated circuit containing a ZTC capacitor including a silicon dioxide dielectric layer with a phosphorus density between 1.7×1020 atoms/cm3 and 2.3×1020 atoms/cm3.
摘要:
Semiconductor devices and fabrication methods are provided in which a capacitor dielectric is provided with phosphorus or other n-type dopants through implantation of other techniques to reduce the voltage coefficient of capacitance and/or the dielectric absorption of the capacitor.
摘要:
The present invention provides a system for dissipating any aberrant charge that may accumulate during the fabrication of a semiconductor device segment (200), obviating overstress or break down damage to a focal device structure (208) that might result from uncontrolled dissipation of the aberrant charge. A substrate (202) has first and second intermediate structures (204, 206) disposed atop the substrate, with the focal structure disposed atop the substrate therebetween. A first conductive structure (210) is disposed atop the second intermediate structure, the focal structure, and a portion of the first intermediate structure. A third intermediate structure (214) is disposed contiguously atop the first conductive structure and the first intermediate layer. A void (216) is formed in a peripheral region (218) of device segment, through the first and third intermediate layers down to the substrate. A second conductive structure (220) is disposed atop the third intermediate structure such that it couples the substrate through the void.
摘要:
The present invention provides a semiconductor device (200), a method of manufacture therefor and an integrated circuit including the same. In one embodiment of the invention, the semiconductor device (200) includes a floating gate (230) located over a semiconductor substrate (210), wherein the floating gate (230) has a metal control gate (250) located thereover. The semiconductor device (200), in the same embodiment, further includes a dielectric layer (240) located between the floating gate 230 and the metal control gate (250), the dielectric layer (240) having a gettering material located therein.
摘要:
One embodiment of the present invention relates to a capacitor. The capacitor includes a first electrode and a capacitor dielectric layer along-side the first capacitor electrode. A second electrode is found along-side the capacitor dielectric layer includes a number of inter-layers that are configured to prevent defects in the second capacitor electrode. Other methods and devices are also disclosed.
摘要:
A method of fabricating a one-time programmable (OTP) memory cell with improved read current in one of its programmed states, and a memory cell so fabricated. The OTP memory cell is constructed with trench isolation structures on its sides. After trench etch, and prior to filling the isolation trenches with dielectric material, a fluorine implant is performed into the trench surfaces. The implant may be normal to the device surface or at an angle from the normal. Completion of the cell transistor to form a floating-gate metal-oxide-semiconductor (MOS) transistor is then carried out. Improved on-state current (Ion) results from the fluorine implant.
摘要:
A method of fabricating a one-time programmable (OTP) memory cell with improved read current in one of its programmed states, and a memory cell so fabricated. The OTP memory cell is constructed with trench isolation structures on its sides. After trench etch, and prior to filling the isolation trenches with dielectric material, a fluorine implant is performed into the trench surfaces. The implant may be normal to the device surface or at an angle from the normal. Completion of the cell transistor to form a floating-gate metal-oxide-semiconductor (MOS) transistor is then carried out. Improved on-state current (Ion) results from the fluorine implant.
摘要:
The present invention provides a system for dissipating any aberrant charge that may accumulate during the fabrication of a semiconductor device segment (200), obviating overstress or break down damage to a focal device structure (208) that might result from uncontrolled dissipation of the aberrant charge. A substrate (202) has first and second intermediate structures (204, 206) disposed atop the substrate, with the focal structure disposed atop the substrate therebetween. A first conductive structure (210) is disposed atop the second intermediate structure, the focal structure, and a portion of the first intermediate structure. A third intermediate structure (214) is disposed contiguously atop the first conductive structure and the first intermediate layer. A void (216) is formed in a peripheral region (218) of device segment, through the first and third intermediate layers down to the substrate. A second conductive structure (220) is disposed atop the third intermediate structure such that it couples the substrate through the void.