摘要:
A method of manufacturing a reduced free-charge carrier lifetime semiconductor structure includes forming a plurality of transistor gate structures in trenches arranged in a semiconductor substrate, forming a body region between adjacent ones of the transistor gate structures and forming an end-of-range irradiation region between adjacent ones of the transistor gate structures, the end-of-range irradiation region having a plurality of vacancies.
摘要:
A semiconductor device includes a first doping region extending from a main surface of a semiconductor substrate into the semiconductor substrate. Further, the semiconductor device includes a second doping region arranged adjacent to the first doping region. The first doping region includes at least one low doping dose portion extending from the main surface of the semiconductor substrate to the second doping region. A doping dose within the low doping dose portion of the first doping region is less than 3 times a breakdown charge. Additionally, the semiconductor device includes a first electrode structure in contact with the first doping region at the main surface of the semiconductor substrate. The work function of the first electrode structure at the main surface of the semiconductor substrate is larger than 4.9 eV or lower than 4.4 eV.
摘要:
A field-effect semiconductor device having a semiconductor body with a main surface is provided. The semiconductor body includes, in a vertical cross-section substantially orthogonal to the main surface, a drift layer of a first conductivity type, a semiconductor mesa of the first conductivity type adjoining the drift layer, substantially extending to the main surface and having two side walls, and two second semiconductor regions of a second conductivity type arranged next to the semiconductor mesa. Each of the two second semiconductor regions forms a pn-junction at least with the drift layer. A rectifying junction is formed at least at one of the two side walls of the mesa. Further, a method for producing a heterojunction semiconductor device is provided.
摘要:
A semiconductor device includes a semiconductor body having a trench transistor cell array. The trench transistor cell array includes a first trench transistor cell unit and a second trench transistor cell unit. Transistor cells based on the first trench transistor cell unit and transistor cells based on the second trench transistor cell unit are electrically connected in parallel. The first trench transistor cell unit has a first threshold voltage. The second trench transistor cell unit has a second threshold voltage larger than the first threshold voltage. An absolute value of dU/dt at turning on a nominal current of the transistor cell array is at least 50% of an absolute value of dU/dt at turning on 10% of the nominal current of the transistor cell array, dU/dt being the temporal derivate of a voltage U between load terminals of the trench transistor cell array.
摘要:
A power semiconductor device includes: a semiconductor body coupled to first and second load terminals; an active region with first and second sections, both configured to conduct a load current between the load terminals; electrically isolated from the load terminals, first control electrodes in the first section and second control electrodes in both the first and second sections); and semiconductor channel structures in the semiconductor body extending in both the first and second sections. Each channel structure is associated to at least one of the first and second control electrodes. The respective control electrode is configured to induce an inversion channel for load current conduction in the associated semiconductor channel structure. The first section exhibits a first effective total inversion channel width per unit area ratio, W/A1, and the second section exhibits a second effective inversion channel width per unit area ratio, W/A2, where W/A1>W/A2.
摘要:
A transistor device includes a semiconductor mesa region between first and second trenches in a semiconductor body, a body region of a first conductivity type and a source region of a second conductivity type in the semiconductor mesa region, a drift region of the second conductivity type in the semiconductor body, and a gate electrode adjacent the body region in the first trench, and dielectrically insulated from the body region by a gate dielectric. The body region separates the source region from the drift region and extends to the surface of the semiconductor mesa region adjacent the source region. The body region comprises a surface region which adjoins the surface of the semiconductor mesa region and the first trench. The surface region has a higher doping concentration than a section of the body region that separates the source region from the drift region.
摘要:
An IGBT includes at least one first type transistor cell, including a base region, first and second emitter regions, and a body region arranged between the first emitter region and base region. The base region is arranged between the body region and second emitter region. A gate electrode adjacent the body region is dielectrically insulated from the body region by a gate dielectric. A base electrode adjacent the base region is dielectrically insulated from the base region by a base electrode dielectric. The base region has a first base region section adjoining the base electrode dielectric and a second base region section arranged between the second emitter region and the first base region section. A ratio between the doping concentration of the first base region section and the doping concentration of the second base region section is at least 10. The base electrode dielectric is thicker than the gate dielectric.
摘要:
A semiconductor component is described herein. In accordance with one example of the invention, the semiconductor component includes a semiconductor body, which has a top surface and a bottom surface. A body region, which is doped with dopants of a second doping type, is arranged at the top surface of the semiconductor body. A drift region is arranged under the body region and doped with dopants of a first doping type, which is complementary to the second doping type. Thus a first pn-junction is formed at the transition between the body region and the drift region. A field stop region is arranged under the drift region and adjoins the drift region. The field stop region is doped with dopants of the same doping type as the drift region. However, the concentration of dopants in the field stop region is higher than the concentration of dopants in the drift region. At least one pair of semiconductor layers composed of a first and a second semiconductor layer are arranged in the drift region. The first semiconductor layer extends substantially parallel to the top surface of the semiconductor body and is doped with dopants of the first doping type but with a higher concentration of dopants than the drift region. The second semiconductor layer is arranged adjacent to or adjoining the first semiconductor layer and is doped with dopants of the second doping type. Furthermore, the second semiconductor layer is structured to include openings so that a vertical current path is provided through the drift region without an intervening pn-junction.
摘要:
An IGBT includes at least one first type transistor cell, including a base region, a first emitter region, a body region, and a second emitter region. The body region is arranged between the first emitter region and the base region. The base region is arranged between the body region and the second emitter region. The IGBT further includes a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric, and a base electrode adjacent the base region and dielectrically insulated from the base region by a base electrode dielectric. The base region has a first base region section adjoining the base electrode dielectric and a second base region section arranged between the second emitter region and the first base region section. A doping concentration of the first base region section is higher than a doping concentration of the second base region section.
摘要:
A semiconductor device includes a drift zone of a first conductivity type in a semiconductor body. Controllable cells are configured to form a conductive channel connected with the drift zone in a first state. First zones of the first conductivity type as well as second zones and a third zone of a complementary second conductivity type are between the drift zone and a rear side electrode, respectively. The first, second and third zones directly adjoin the rear side electrode. The third zone is larger and has a lower mean emitter efficiency than the second zones.