Abstract:
Non-ideal downstream loading of a differential driver in a single ended circuit driving a communications laser—e.g., Electro absorption Modulated Laser (EML)—may be compensated by deploying a second matching network at the non-functional (terminated) driver output node. Certain embodiments may further compensate for distortion arising from circuit non-ideality, by introducing a laser replica downstream of the second matching network to mimic electrical properties of the laser. Embodiments may sufficiently compensate for downstream circuit non-ideality to allow replacing the bulky choke inductor of a bias tee, with a resistor. Substituting a resistor for a more complex inductor structure can simplify design and fabrication of the single-ended driver circuit, and also reduce footprint by eliminating area formerly occupied by the choke inductor. Embodiments may be particularly suited to bridge integration with other system components undergoing design migration toward double-ended modulator circuit architectures featuring a differential driver.
Abstract:
An optical receiver that recovers data is disclosed. The optical receiver includes a photodetector configured to convert an optical signal into a current signal, and a TIA (Transimpedance Amplifier) configured to operate according to a set of parameters to convert the current signal to a voltage signal. The optical receiver also includes an equalizer configured to process the voltage signal to produce a processed signal having recovered data from the optical signal, and to produce one or more equalization metrics. According to an embodiment of the disclosure, the optical receiver has a feedback processor configured to automatically tune operation of the TIA by adjusting at least one of the parameters of the TIA based on the one or more equalization metrics. This may effect a change in performance or power consumption of the optical receiver while receiving and recovering data. A corresponding method for recovering data is also disclosed.
Abstract:
An integrated circuit device. The device includes an address input(s) configured to receive address information from an address stream from an address command bus coupled to a host controller and an address output(s) configured to drive address information, and is coupled to a plurality of memory (DRAM) devices provided on a DIMM. The device has an address match table comprising a non-volatile memory device configured to store at least a revised address corresponding to a spare memory location and a bad address of at least one of the plurality of memory (DRAM) devices. The device has a control module configured to process and determine whether each address matches with a stored address in the address match table to identify the bad address and configured to replace the bad address with the revised address of the spare memory location.
Abstract:
Techniques for operating a DIMM apparatus. The apparatus comprises a plurality of DRAM devices numbered from 0 through N−1, where N is an integer greater than seven (7), each of the DRAM devices is configured in a substrate module; a buffer integrated circuit device comprising a plurality of data buffers (DB) numbered from 0 through N−1, where N is an integer greater than seven (7), each of the data buffers corresponds to one of the DRAM devices; and a plurality of error correcting modules (“ECMs”) associated with the plurality of DRAM devices.
Abstract:
An integrated circuit device. The device includes an address input(s) configured to receive address information from an address stream from an address command bus coupled to a host controller and an address output(s) configured to drive address information, and is coupled to a plurality of memory (DRAM) devices provided on a DIMM. The device has an address match table comprising a non-volatile memory device configured to store at least a revised address corresponding to a spare memory location and a bad address of at least one of the plurality of memory (DRAM) devices. The device has a control module configured to process and determine whether each address matches with a stored address in the address match table to identify the bad address and configured to replace the bad address with the revised address of the spare memory location.
Abstract:
An optical receiver that recovers data is disclosed. The optical receiver includes a photodetector configured to convert an optical signal into a current signal, and a TIA (Transimpedance Amplifier) configured to operate according to a set of parameters to convert the current signal to a voltage signal. The optical receiver also includes an equalizer configured to process the voltage signal to produce a processed signal having recovered data from the optical signal, and to produce one or more equalization metrics. According to an embodiment of the disclosure, the optical receiver has a feedback processor configured to automatically tune operation of the TIA by adjusting at least one of the parameters of the TIA based on the one or more equalization metrics. This may effect a change in performance or power consumption of the optical receiver while receiving and recovering data. A corresponding method for recovering data is also disclosed.