Abstract:
In an embodiment, a processor comprises a plurality of processing cores and a compression accelerator to compress an input stream comprising a first data block and a second data block. The compression accelerator comprises a first compression engine to compress the first data block; and a second compression engine to update state data for the second compression engine using a sub-portion of the first data block; and after an update of the state data for the second compression engine using the sub-portion of the first data block, compress a second data block using the updated state data for the second compression engine. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a compression accelerator coupled to a plurality of hardware processing cores. The compression accelerator is to: receive input data to be compressed; select a particular intermediate format of a plurality of intermediate formats based on a type of compression software to be executed by at least one of the plurality of hardware processing cores; perform a duplicate string elimination operation on the input data to generate a partially compressed output in the particular intermediate format; and provide the partially compressed output in the particular intermediate format to the compression software, wherein the compression software is to perform an encoding operation on the partially compressed output to generate a final compressed output. Other embodiments are described and claimed.
Abstract:
Techniques and apparatus for verification of compressed data are described. In one embodiment, for example an apparatus to provide verification of compressed data may include at least one memory and logic, at least a portion of comprised in hardware coupled to the at least one memory, the logic to access compressed data, access compression information associated with the compressed data, decompress at least a portion of the compressed data to generate decompressed data, and verify the compressed data via a comparison of the decompressed data with the compression information. Other embodiments are described and claimed.
Abstract:
An embodiment may include circuitry that may be capable of performing compression-related operations that may include: (a) indicating, at least in part, in a data structure at least one position of at least one subset of characters that are to be encoded as a symbol, (b) comparing, at least in part, at least one pair of multi-byte data words that are of identical predetermined fixed size, (c) maintaining, at least in part, an array of pointers to potentially matching strings that are to be compared with at least one currently examined string, and/or (d) allocating, at least in part, a first buffer portion to store at least one portion of uncompressed data from an application buffer that is to be input for compression to produce a compressed data stream. Other embodiments are described and claimed.
Abstract:
Techniques and apparatus for parallel decompression are described. In one embodiment, for example, an apparatus to provide parallel decompression may include at least one memory and logic for a decompression component, at least a portion of the logic comprised in hardware coupled to the at least one memory, the logic to determine decompression information of a compressed data unit, annotate the compressed data unit with at least a portion of the decompression information to generate an annotated data unit, parallel-decode the annotated data unit to generate a plurality of intermediate elements, and decode and merge the plurality of intermediate elements to generate a decompressed data unit. Other embodiments are described and claimed.
Abstract:
An apparatus is described that includes a semiconductor chip having an instruction execution pipeline having one or more execution units with respective logic circuitry to: a) execute a first instruction that multiplies a first input operand and a second input operand and presents a lower portion of the result, where, the first and second input operands are respective elements of first and second input vectors; b) execute a second instruction that multiplies a first input operand and a second input operand and presents an upper portion of the result, where, the first and second input operands are respective elements of first and second input vectors; and, c) execute an add instruction where a carry term of the add instruction's adding is recorded in a mask register.
Abstract:
Compression and decompression technology within a solid-state device (SSD) is disclosed that provides a good compression ratio while taking up less on-chip area. An input interface receives an input stream to be compressed. An output interface provides a compressed stream. A history buffer is of a fixed size that is a fraction of a size of a data buffer. Processing logic encodes into the compressed stream element types, literals and pointers, the latter which reference copies of data found elsewhere within the history buffer during compression. The history buffer may be multiple banks in width, where the data is loaded from the input stream sequentially across rows of the banks. The decompression side may be similarly designed, optionally with a different number of banks. The pointers may be a fixed two bytes including four bits for length and eleven bits for offset of back reference to a copy (or other combination).
Abstract:
Methods and apparatuses relating to offload operations are described. In one embodiment, a hardware processor includes a core to execute a thread and offload an operation; and a first and second hardware accelerator to execute the operation, wherein the first and second hardware accelerator are coupled to shared buffers to store output data from the first hardware accelerator and provide the output data as input data to the second hardware accelerator, an input buffer descriptor array of the second hardware accelerator with an entry for each respective shared buffer, an input buffer response descriptor array of the second hardware accelerator with a corresponding response entry for each respective shared buffer, an output buffer descriptor array of the first hardware accelerator with an entry for each respective shared buffer, and an output buffer response descriptor array of the first hardware accelerator with a corresponding response entry for each respective shared buffer.
Abstract:
An apparatus and method for performing parallel decoding of prefix codes such as Huffman codes. For example, one embodiment of an apparatus comprises: a first decompression module to perform a non-speculative decompression of a first portion of a prefix code payload comprising a first plurality of symbols; and a second decompression module to perform speculative decompression of a second portion of the prefix code payload comprising a second plurality of symbols concurrently with the non-speculative decompression performed by the first compression module.
Abstract:
An apparatus and method for performing parallel decoding of prefix codes such as Huffman codes. For example, one embodiment of an apparatus comprises: a first decompression module to perform a non-speculative decompression of a first portion of a prefix code payload comprising a first plurality of symbols; and a second decompression module to perform speculative decompression of a second portion of the prefix code payload comprising a second plurality of symbols concurrently with the non-speculative decompression performed by the first compression module.