Abstract:
One embodiment provides an apparatus. The apparatus include a device storage logic. The device storage logic is to determine a key-based pointer based, at least in part, on a key included in an input key-value (KV) pair received from a host device and to determine whether a unique input KV data block included in the input KV pair is duplicated in a nonvolatile memory circuitry of a storage device. The device storage logic is further to set a descriptor pointer associated with the unique input KV data block to point to a physical nonvolatile memory (NVM) address associated with an existing unique data block and increment a first reference count associated with the existing unique data block, if the unique input KV data block is a duplicate of the existing unique data block, or store the input KV data block to a physical NVM location associated with a selected physical NVM address, set the descriptor pointer to point to the selected physical NVM address and set a second reference count associated with the selected physical NVM address to one, if the unique input KV data block is not duplicated in the NVM circuitry.
Abstract:
In an embodiment, a processor comprises a plurality of processing cores and a compression accelerator to compress an input stream comprising a first data block and a second data block. The compression accelerator comprises a first compression engine to compress the first data block; and a second compression engine to update state data for the second compression engine using a sub-portion of the first data block; and after an update of the state data for the second compression engine using the sub-portion of the first data block, compress a second data block using the updated state data for the second compression engine. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a compression accelerator coupled to a plurality of hardware processing cores. The compression accelerator is to: receive input data to be compressed; select a particular intermediate format of a plurality of intermediate formats based on a type of compression software to be executed by at least one of the plurality of hardware processing cores; perform a duplicate string elimination operation on the input data to generate a partially compressed output in the particular intermediate format; and provide the partially compressed output in the particular intermediate format to the compression software, wherein the compression software is to perform an encoding operation on the partially compressed output to generate a final compressed output. Other embodiments are described and claimed.
Abstract:
Systems, methods, and apparatuses to low-latency page decompression and compression acceleration are described. In one embodiment, a system on a chip (SoC) includes a hardware processor core, and an accelerator circuit coupled to the hardware processor core, the accelerator circuit comprising a decompressor circuit and a direct memory access circuit to: in response to a first descriptor sent from the hardware processor core, cause the decompressor circuit to decompress compressed data from the direct memory access circuit into decompressed data and store the decompressed data in a buffer in the accelerator circuit, and in response to a second descriptor sent from the hardware processor core separately from the first descriptor, cause the decompressed data to be written from the buffer to memory external to the accelerator circuit by the direct memory access circuit.
Abstract:
Techniques and apparatus for verification of compressed data are described. In one embodiment, for example an apparatus to provide verification of compressed data may include at least one memory and logic, at least a portion of comprised in hardware coupled to the at least one memory, the logic to access compressed data, access compression information associated with the compressed data, decompress at least a portion of the compressed data to generate decompressed data, and verify the compressed data via a comparison of the decompressed data with the compression information. Other embodiments are described and claimed.
Abstract:
Methods and apparatus to perform string matching for network packet inspection are disclosed. In some embodiments there is a set of string matching slice circuits, each slice circuit of the set being configured to perform string matching steps in parallel with other slice circuits. Each slice circuit may include an input window storing some number of bytes of data from an input data steam. The input window of data may be padded if necessary, and then multiplied by a polynomial modulo an irreducible Galois-field polynomial to generate a hash index. A storage location of a memory corresponding to the hash index may be accessed to generate a slice-hit signal of a set of H slice-hit signals. The slice-hit signal may be provided to an AND-OR logic array where the set of H slice-hit signals is logically combined into a match result.
Abstract:
An embodiment may include circuitry that may be capable of performing compression-related operations that may include: (a) indicating, at least in part, in a data structure at least one position of at least one subset of characters that are to be encoded as a symbol, (b) comparing, at least in part, at least one pair of multi-byte data words that are of identical predetermined fixed size, (c) maintaining, at least in part, an array of pointers to potentially matching strings that are to be compared with at least one currently examined string, and/or (d) allocating, at least in part, a first buffer portion to store at least one portion of uncompressed data from an application buffer that is to be input for compression to produce a compressed data stream. Other embodiments are described and claimed.
Abstract:
In one embodiment, a method includes: receiving, in an edge platform, a plurality of messages from a plurality of edge devices coupled to the edge platform, the plurality of messages comprising metadata including priority information and granularity information; extracting at least the priority information from the plurality of messages; storing the plurality of messages in entries of a pending request queue according to the priority information; selecting a first message stored in the pending request queue for delivery to a destination circuit; and sending a message header for the first message to the destination circuit via at least one interface circuit, the message header including the priority information, and thereafter sending a plurality of packets including payload information of the first message to the destination circuit via the at least one interface circuit. Other embodiments are described and claimed.
Abstract:
Techniques and apparatus for parallel decompression are described. In one embodiment, for example, an apparatus to provide parallel decompression may include at least one memory and logic for a decompression component, at least a portion of the logic comprised in hardware coupled to the at least one memory, the logic to determine decompression information of a compressed data unit, annotate the compressed data unit with at least a portion of the decompression information to generate an annotated data unit, parallel-decode the annotated data unit to generate a plurality of intermediate elements, and decode and merge the plurality of intermediate elements to generate a decompressed data unit. Other embodiments are described and claimed.
Abstract:
An apparatus is described that includes a semiconductor chip having an instruction execution pipeline having one or more execution units with respective logic circuitry to: a) execute a first instruction that multiplies a first input operand and a second input operand and presents a lower portion of the result, where, the first and second input operands are respective elements of first and second input vectors; b) execute a second instruction that multiplies a first input operand and a second input operand and presents an upper portion of the result, where, the first and second input operands are respective elements of first and second input vectors; and, c) execute an add instruction where a carry term of the add instruction's adding is recorded in a mask register.