Abstract:
Systems and methods may provide for determining an operating mode of a display device that may include a flat panel display and a controller coupled to the flat panel display. The controller may be configured to determine an operating mode for the flat panel display among a plurality of operating modes including at least a first operating mode and a second operating mode. In the first operating mode, the controller may set the flat panel display to utilize a first frame rate and a first inversion mode to save power. In the second operating mode, the controller may set the flat panel display to utilize a second frame rate, a second inversion mode, and black frame insertion to improve image quality. The second frame rate may be faster than the first frame rate. The second inversion mode and black frame insertion may be mutually configured to maintain a DC balanced operation of the flat panel display.
Abstract:
Some embodiments describe techniques that relate to power efficient, high frequency displays with motion blur mitigation. In one embodiment, the refresh rate of a display device may be dynamically modified, e.g., to reduce power consumption and/or reduce motion blur. Other embodiments are also described.
Abstract:
Techniques are described to transmit commands to a display device. The commands can be transmitted in header byte fields of secondary data packets. The commands can be used to cause a target device to capture a frame, enter or exit self refresh mode, or reduce power use of a connection. In addition, a request to exit main link standby mode can cause the target enter training mode without explicit command to exit main link standby mode.