Abstract:
A processor includes a cache hierarchy and an execution unit. The cache hierarchy includes a lower level cache and a higher level cache. The execution unit includes logic to issue a memory operation to access the cache hierarchy. The lower level cache includes logic to determine that a requested cache line of the memory operation is unavailable in the lower level cache, determine that a line fill buffer of the lower level cache is full, and initiate prefetching of the requested cache line from the higher level cache based upon the determination that the line fill buffer of the lower level cache is full. The line fill buffer is to forward miss requests to the higher level cache.
Abstract:
A hardware profiling mechanism implemented by performance monitoring hardware enables page level automatic binary translation. The hardware during runtime identifies a code page in memory containing potentially optimizable instructions. The hardware requests allocation of a new page in memory associated with the code page, where the new page contains a collection of counters and each of the counters corresponds to one of the instructions in the code page. When the hardware detects a branch instruction having a branch target within the code page, it increments one of the counters that has the same position in the new page as the branch target in the code page. The execution of the code page is repeated and the counters are incremented when branch targets fall within the code page. The hardware then provides the counter values in the new page to a binary translator for binary translation.
Abstract:
Systems, apparatuses, and methods for a hardware and software system to automatically decompose a program into multiple parallel threads are described. In some embodiments, the systems and apparatuses execute a method of original code decomposition and/or generated thread execution.
Abstract:
Systems, apparatuses, and methods for improving transactional memory (TM) throughput using a TM region indicator (or color) are described. Through the use of TM region indicators younger TM regions can have their instructions retired while waiting for older TM regions to commit. A copy-on-write (COW) buffer may be used to maintain a mapping from checkpointed architectural registers to physical registers, wherein the COW buffer maintains a plurality of register checkpoints for a plurality of TM regions by marking separations between TM regions using pointers, a first pointer to identify a position in the COW buffer of the last committed instruction, a retirement pointer to identify a boundary between a youngest TM region and a currently retiring position.
Abstract:
A processor includes a cache hierarchy and an execution unit. The cache hierarchy includes a lower level cache and a higher level cache. The execution unit includes logic to issue a memory operation to access the cache hierarchy. The lower level cache includes logic to determine that a requested cache line of the memory operation is unavailable in the lower level cache, determine that a line fill buffer of the lower level cache is full, and initiate prefetching of the requested cache line from the higher level cache based upon the determination that the line fill buffer of the lower level cache is full. The line fill buffer is to forward miss requests to the higher level cache.
Abstract:
Systems, apparatuses, and methods for improving TM throughput using a TM region indicator (or color) are described. Through the use of TM region indicators younger TM regions can have their instructions retired while waiting for older TM regions to commit.