Abstract:
Provided are methods of High Productivity Combinatorial testing of semiconductor substrates, each including multiple site isolated regions. Each site isolated region includes a titanium nitride structure as well as a hafnium oxide structure and/or a polysilicon structure. Each site isolated region is exposed to an etching solution that includes sulfuric acid, hydrogen peroxide, and hydrogen fluoride. The composition of the etching solution and/or etching conditions are varied among the site isolated regions to study effects of this variation on the etching selectivity of titanium nitride relative to hafnium oxide and/or polysilicon and on the etching rates. The concentration of sulfuric acid and/or hydrogen peroxide in the etching solution may be less than 7% by volume each, while the concentration of hydrogen fluoride may be between 50 ppm and 200 ppm. In some embodiments, the temperature of the etching solution is maintained at between about 40° C. and 60° C.
Abstract:
Provided are methods for processing semiconductor substrates to remove high-dose ion implanted (HDI) photoresist structures without damaging other structures made of titanium nitride, tantalum nitride, hafnium oxide, and/or hafnium silicon oxide. The removal is performed using a mixture of an organic solvent, an oxidant, a metal-based catalyst, and one of a base or an acid. Some examples of suitable organic solvents include dimethyl sulfoxide, n-ethyl pyrrolidone, monomethyl ether, and ethyl lactate. Transition metals in their zero-oxidation state, such as metallic iron or metallic chromium, may be used as catalysts in this mixture. In some embodiments, a mixture includes ethyl lactate, of tetra-methyl ammonium hydroxide, and less than 1% by weight of the metal-based catalyst. The etching rate of the HDI photoresist may be at least about 100 Angstroms per minute, while other structures may remain substantially intact.
Abstract:
Provided are methods for processing semiconductor substrates to remove high-dose ion implanted (HDI) photoresist structures without damaging other structures made of titanium nitride, tantalum nitride, hafnium oxide, and/or hafnium silicon oxide. The removal is performed using a mixture of an organic solvent, an oxidant, a metal-based catalyst, and one of a base or an acid. Some examples of suitable organic solvents include dimethyl sulfoxide, n-ethyl pyrrolidone, monomethyl ether, and ethyl lactate. Transition metals in their zero-oxidation state, such as metallic iron or metallic chromium, may be used as catalysts in this mixture. In some embodiments, a mixture includes ethyl lactate, of tetra-methyl ammonium hydroxide, and less than 1% by weight of the metal-based catalyst. The etching rate of the HDI photoresist may be at least about 100 Angstroms per minute, while other structures may remain substantially intact.
Abstract:
A method includes providing a semiconductor structure including at least one first circuit element including a first semiconductor material and at least one second circuit element including a second semiconductor material. A dielectric layer having an intrinsic stress is formed that includes a first portion over the at least one first circuit element and a second portion over the at least one second circuit element. A first annealing process is performed, wherein an intrinsic stress is created at least in the first semiconductor material by stress memorization, and thereafter the first portion of the dielectric layer is removed. A layer of a metal is formed, and a second annealing process is performed, wherein the metal and the first semiconductor material react chemically to form a silicide. The second portion of the dielectric layer substantially prevents a chemical reaction between the second semiconductor material and the metal.
Abstract:
A method includes providing a semiconductor structure including at least one first circuit element including a first semiconductor material and at least one second circuit element including a second semiconductor material. A dielectric layer having an intrinsic stress is formed that includes a first portion over the at least one first circuit element and a second portion over the at least one second circuit element. A first annealing process is performed, wherein an intrinsic stress is created at least in the first semiconductor material by stress memorization, and thereafter the first portion of the dielectric layer is removed. A layer of a metal is formed, and a second annealing process is performed, wherein the metal and the first semiconductor material react chemically to form a silicide. The second portion of the dielectric layer substantially prevents a chemical reaction between the second semiconductor material and the metal.