High Productivity Combinatorial Techniques for Titanium Nitride Etching
    1.
    发明申请
    High Productivity Combinatorial Techniques for Titanium Nitride Etching 审中-公开
    氮化钛蚀刻的高生产率组合技术

    公开(公告)号:US20140179112A1

    公开(公告)日:2014-06-26

    申请号:US13726760

    申请日:2012-12-26

    Abstract: Provided are methods of High Productivity Combinatorial testing of semiconductor substrates, each including multiple site isolated regions. Each site isolated region includes a titanium nitride structure as well as a hafnium oxide structure and/or a polysilicon structure. Each site isolated region is exposed to an etching solution that includes sulfuric acid, hydrogen peroxide, and hydrogen fluoride. The composition of the etching solution and/or etching conditions are varied among the site isolated regions to study effects of this variation on the etching selectivity of titanium nitride relative to hafnium oxide and/or polysilicon and on the etching rates. The concentration of sulfuric acid and/or hydrogen peroxide in the etching solution may be less than 7% by volume each, while the concentration of hydrogen fluoride may be between 50 ppm and 200 ppm. In some embodiments, the temperature of the etching solution is maintained at between about 40° C. and 60° C.

    Abstract translation: 提供了半导体基板的高效率组合测试方法,每个包括多个位置隔离区域。 每个位置分离区域包括氮化钛结构以及氧化铪结构和/或多晶硅结构。 每个位置分离区域暴露于包括硫酸,过氧化氢和氟化氢的蚀刻溶液。 蚀刻溶液的组成和/或蚀刻条件在位置分离区域之间变化,以研究该变化对氮化钛相对于氧化铪和/或多晶硅的蚀刻选择性的影响以及蚀刻速率。 蚀刻溶液中硫酸和/或过氧化氢的浓度可以小于7体积%,而氟化氢的浓度可以在50ppm和200ppm之间。 在一些实施例中,蚀刻溶液的温度保持在约40℃至60℃之间。

    High Dose Ion-Implanted Photoresist Removal Using Organic Solvent and Transition Metal Mixtures
    2.
    发明申请
    High Dose Ion-Implanted Photoresist Removal Using Organic Solvent and Transition Metal Mixtures 有权
    使用有机溶剂和过渡金属混合物去除高剂量离子注入光致抗蚀剂

    公开(公告)号:US20140187041A1

    公开(公告)日:2014-07-03

    申请号:US13728079

    申请日:2012-12-27

    Abstract: Provided are methods for processing semiconductor substrates to remove high-dose ion implanted (HDI) photoresist structures without damaging other structures made of titanium nitride, tantalum nitride, hafnium oxide, and/or hafnium silicon oxide. The removal is performed using a mixture of an organic solvent, an oxidant, a metal-based catalyst, and one of a base or an acid. Some examples of suitable organic solvents include dimethyl sulfoxide, n-ethyl pyrrolidone, monomethyl ether, and ethyl lactate. Transition metals in their zero-oxidation state, such as metallic iron or metallic chromium, may be used as catalysts in this mixture. In some embodiments, a mixture includes ethyl lactate, of tetra-methyl ammonium hydroxide, and less than 1% by weight of the metal-based catalyst. The etching rate of the HDI photoresist may be at least about 100 Angstroms per minute, while other structures may remain substantially intact.

    Abstract translation: 提供了用于处理半导体衬底以去除高剂量离子注入(HDI)光致抗蚀剂结构而不损坏由氮化钛,氮化钽,氧化铪和/或氧化铪形成的其它结构的半导体衬底的方法。 使用有机溶剂,氧化剂,金属类催化剂和碱或酸之一的混合物进行除去。 合适的有机溶剂的一些实例包括二甲基亚砜,正乙基吡咯烷酮,单甲基醚和乳酸乙酯。 过渡金属的零氧化态,如金属铁或金属铬,可用作该混合物中的催化剂。 在一些实施方案中,混合物包括四甲基氢氧化铵的乳酸乙酯和小于1重量%的金属基催化剂。 HDI光致抗蚀剂的蚀刻速率可以为每分钟至少约100埃,而其它结构可保持基本完整。

    High dose ion-implanted photoresist removal using organic solvent and transition metal mixtures
    3.
    发明授权
    High dose ion-implanted photoresist removal using organic solvent and transition metal mixtures 有权
    使用有机溶剂和过渡金属混合物进行高剂量离子注入光刻胶去除

    公开(公告)号:US08853081B2

    公开(公告)日:2014-10-07

    申请号:US13728079

    申请日:2012-12-27

    Abstract: Provided are methods for processing semiconductor substrates to remove high-dose ion implanted (HDI) photoresist structures without damaging other structures made of titanium nitride, tantalum nitride, hafnium oxide, and/or hafnium silicon oxide. The removal is performed using a mixture of an organic solvent, an oxidant, a metal-based catalyst, and one of a base or an acid. Some examples of suitable organic solvents include dimethyl sulfoxide, n-ethyl pyrrolidone, monomethyl ether, and ethyl lactate. Transition metals in their zero-oxidation state, such as metallic iron or metallic chromium, may be used as catalysts in this mixture. In some embodiments, a mixture includes ethyl lactate, of tetra-methyl ammonium hydroxide, and less than 1% by weight of the metal-based catalyst. The etching rate of the HDI photoresist may be at least about 100 Angstroms per minute, while other structures may remain substantially intact.

    Abstract translation: 提供了用于处理半导体衬底以去除高剂量离子注入(HDI)光致抗蚀剂结构而不损坏由氮化钛,氮化钽,氧化铪和/或氧化铪形成的其它结构的半导体衬底的方法。 使用有机溶剂,氧化剂,金属类催化剂和碱或酸之一的混合物进行除去。 合适的有机溶剂的一些实例包括二甲基亚砜,正乙基吡咯烷酮,单甲基醚和乳酸乙酯。 过渡金属的零氧化态,如金属铁或金属铬,可用作该混合物中的催化剂。 在一些实施方案中,混合物包括四甲基氢氧化铵的乳酸乙酯和小于1重量%的金属基催化剂。 HDI光致抗蚀剂的蚀刻速率可以为每分钟至少约100埃,而其它结构可保持基本完整。

    METHOD OF FORMING A SEMICONDUCTOR STRUCTURE INCLUDING SILICIDED AND NON-SILICIDED CIRCUIT ELEMENTS
    5.
    发明申请
    METHOD OF FORMING A SEMICONDUCTOR STRUCTURE INCLUDING SILICIDED AND NON-SILICIDED CIRCUIT ELEMENTS 有权
    形成含硅和非电解电路元件的半导体结构的方法

    公开(公告)号:US20150031179A1

    公开(公告)日:2015-01-29

    申请号:US14293627

    申请日:2014-06-02

    Abstract: A method includes providing a semiconductor structure including at least one first circuit element including a first semiconductor material and at least one second circuit element including a second semiconductor material. A dielectric layer having an intrinsic stress is formed that includes a first portion over the at least one first circuit element and a second portion over the at least one second circuit element. A first annealing process is performed, wherein an intrinsic stress is created at least in the first semiconductor material by stress memorization, and thereafter the first portion of the dielectric layer is removed. A layer of a metal is formed, and a second annealing process is performed, wherein the metal and the first semiconductor material react chemically to form a silicide. The second portion of the dielectric layer substantially prevents a chemical reaction between the second semiconductor material and the metal.

    Abstract translation: 一种方法包括提供包括至少一个包括第一半导体材料的第一电路元件和包括第二半导体材料的至少一个第二电路元件的半导体结构。 形成具有固有应力的电介质层,其包括至少一个第一电路元件上的第一部分和至少一个第二电路元件上的第二部分。 进行第一退火处理,其中通过应力记忆至少在第一半导体材料中产生固有应力,然后去除电介质层的第一部分。 形成金属层,进行第二退火处理,其中金属和第一半导体材料通过化学反应形成硅化物。 电介质层的第二部分基本上防止了第二半导体材料与金属之间的化学反应。

Patent Agency Ranking