Abstract:
Disclosed herein are various methods of forming a silicon/germanium protection layer above source/drain regions of a transistor. One method disclosed herein includes forming a plurality of recesses in a substrate proximate the gate structure, forming a semiconductor material in the recesses, forming at least one layer of silicon above the semiconductor material, and forming a cap layer comprised of silicon germanium on the layer of silicon. One device disclosed herein includes a gate structure positioned above a substrate, a plurality of recesses formed in the substrate proximate the gate structure, at least one layer of semiconductor material positioned at least partially in the recesses, a layer of silicon positioned above the at least one layer of semiconductor material, and a cap layer comprised of silicon/germanium positioned on the layer of silicon.
Abstract:
A method includes providing a semiconductor structure including at least one first circuit element including a first semiconductor material and at least one second circuit element including a second semiconductor material. A dielectric layer having an intrinsic stress is formed that includes a first portion over the at least one first circuit element and a second portion over the at least one second circuit element. A first annealing process is performed, wherein an intrinsic stress is created at least in the first semiconductor material by stress memorization, and thereafter the first portion of the dielectric layer is removed. A layer of a metal is formed, and a second annealing process is performed, wherein the metal and the first semiconductor material react chemically to form a silicide. The second portion of the dielectric layer substantially prevents a chemical reaction between the second semiconductor material and the metal.
Abstract:
An issue arises when manufacturing semiconductor circuits including PFETs with an SiGe alloy embedded in their source/drain regions and NFETs without any embedded SiGe alloy. In this case, the thickness of the NFET spacers is considerably greater than that of the PFET spacers. In order to alleviate this asymmetry in spacer thickness, a manufacturing flow is proposed wherein a spacer-reducing etching process is introduced before the salicidation. The etching process is performed directly after the ion implantation performed in order to form deep regions of source/drain regions of the NFETs. Thus, the spacer-reducing etching process may be performed in the presence of the same mask used during the NFET deep implantations. The spacer-reducing etching process results in thinning of the NFET spacer structures, thus alleviating the spacer thickness imbalance between NFETs and PFETs.
Abstract:
Disclosed herein are various methods of forming a silicon/germanium protection layer above source/drain regions of a transistor. One method disclosed herein includes forming a plurality of recesses in a substrate proximate the gate structure, forming a semiconductor material in the recesses, forming at least one layer of silicon above the semiconductor material, and forming a cap layer comprised of silicon germanium on the layer of silicon. One device disclosed herein includes a gate structure positioned above a substrate, a plurality of recesses formed in the substrate proximate the gate structure, at least one layer of semiconductor material positioned at least partially in the recesses, a layer of silicon positioned above the at least one layer of semiconductor material, and a cap layer comprised of silicon/germanium positioned on the layer of silicon.
Abstract:
A method includes providing a semiconductor structure including at least one first circuit element including a first semiconductor material and at least one second circuit element including a second semiconductor material. A dielectric layer having an intrinsic stress is formed that includes a first portion over the at least one first circuit element and a second portion over the at least one second circuit element. A first annealing process is performed, wherein an intrinsic stress is created at least in the first semiconductor material by stress memorization, and thereafter the first portion of the dielectric layer is removed. A layer of a metal is formed, and a second annealing process is performed, wherein the metal and the first semiconductor material react chemically to form a silicide. The second portion of the dielectric layer substantially prevents a chemical reaction between the second semiconductor material and the metal.
Abstract:
Methods and apparatus are provided for an integrated circuit with a transistor and a resistor. The method includes depositing a first dielectric layer over the transistor and the resistor, followed by an amorphous silicon layer. The amorphous silicon layer is implanted over the resistor to produce an etch mask, and the amorphous silicon layer and first dielectric layer are removed over the transistor. A contact location on the transistor is then silicided.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a cavity in a semiconductor region laterally adjacent to a gate electrode structure. An EPI strain-inducing fill is deposited into the cavity. The EPI strain-inducing fill includes a main SiGe layer and a Si cap that overlies the main SiGe layer. The EPI strain-inducing fill is doped with boron and has a first peak boron content in an upper portion of the EPI strain-inducing fill of about 2.5 times or greater than an average boron content in an intermediate portion of the main SiGe layer.
Abstract:
One illustrative method disclosed herein includes forming a structure above a semiconductor substrate, performing a conformal deposition process to form a layer of undoped spacer material above the structure, performing an angled ion implant process to form a region of doped spacer material in the layer of undoped spacer material while leaving other portions of the layer of undoped spacer material undoped, and, after performing the angled ion implant process, performing at least one etching process that removes the undoped portions of the layer of undoped spacer material and thereby results in a sidewall spacer comprised of the doped spacer material positioned adjacent at least one side, but not all sides, of the structure.
Abstract:
A method for the manufacture of a semiconductor device is provided, including the steps of providing a semiconductor substrate including a first area separated from a second area by a first isolation region, wherein the second area includes an intermediate transistor comprising a gate electrode, forming an oxide layer over the first and second areas, forming an optical planarization layer (OPL) over the oxide layer, forming a mask layer over the OPL in the first area without covering the OPL in the second area, and etching the OPL with the mask layer being present to expose the oxide layer over the gate electrode of the transistor.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a cavity in a semiconductor region laterally adjacent to a gate electrode structure. An EPI strain-inducing fill is deposited into the cavity. The EPI strain-inducing fill includes a main SiGe layer and a Si cap that overlies the main SiGe layer. The EPI strain-inducing fill is doped with boron and has a first peak boron content in an upper portion of the EPI strain-inducing fill of about 2.5 times or greater than an average boron content in an intermediate portion of the main SiGe layer.