Abstract:
A method includes providing a semiconductor structure including at least one first circuit element including a first semiconductor material and at least one second circuit element including a second semiconductor material. A dielectric layer having an intrinsic stress is formed that includes a first portion over the at least one first circuit element and a second portion over the at least one second circuit element. A first annealing process is performed, wherein an intrinsic stress is created at least in the first semiconductor material by stress memorization, and thereafter the first portion of the dielectric layer is removed. A layer of a metal is formed, and a second annealing process is performed, wherein the metal and the first semiconductor material react chemically to form a silicide. The second portion of the dielectric layer substantially prevents a chemical reaction between the second semiconductor material and the metal.
Abstract:
One method disclosed includes forming a sidewall spacer proximate a gate structure, forming a sacrificial layer of material above a protective cap layer, the sidewall spacer and a substrate, forming a sacrificial protection layer above the sacrificial layer, reducing a thickness of the sacrificial protection layer such that its upper surface is positioned at a level that is below the upper surface of the protective cap layer, performing a first etching process to remove a portion of the sacrificial layer and thereby expose the protective cap layer for further processing, performing a wet acid etching process that includes diluted HF acid in the etch chemistry to remove the protective cap layer and performing at least one process operation to remove at least one of the reduced-thickness sacrificial protection layer or the sacrificial layer from above the surface of the substrate.
Abstract:
In a replacement gate approach, a superior cross-sectional shape of the gate opening may be achieved by performing a material erosion process in an intermediate state of removing the placeholder material. Consequently, the remaining portion of the placeholder material may efficiently protect the underlying sensitive materials, such as a high-k dielectric material, when performing the corner rounding process sequence.
Abstract:
In various aspects, the present disclosure relates to device structures and a method of forming such a device structure. In some illustrative embodiments herein, a device is provided, including a semiconductor substrate having a first trench formed therein, and a first trench isolation structure formed in the first trench. The first trench isolation structure includes first and second insulating liners formed adjacent inner surfaces of the first trench, wherein the first insulating liner is in direct contact with inner surfaces of the first trench and the second insulating liner is formed directly on the first insulating liner, and a first insulating filling material which at least partially fills the first trench. In some aspects, a thickness of the first insulating liner is greater than a thickness of the second insulating liner.
Abstract:
Methods for fabricating an integrated circuit are provided herein. In an embodiment, a method for fabricating an integrated circuit includes forming a gate electrode structure overlying a semiconductor substrate. First sidewall spacers are formed adjacent to sidewalls of the gate electrode structure, and the first sidewall spacers include a nitride. An oxide etchant is applied to a surface of the semiconductor substrate after forming the first sidewall spacers. A second spacer material that includes a nitride is deposited over the semiconductor substrate and the first sidewall spacers to form a second spacer layer after applying the oxide etchant to the surface of the semiconductor substrate. The second spacer layer is etched with a second spacer etchant to form second sidewall spacers.
Abstract:
A semiconductor device includes a gate electrode structure of a transistor, the gate electrode structure being positioned above a semiconductor region and having a gate insulation layer that includes a high-k dielectric material, a metal-containing cap material positioned above the gate insulation layer, and a gate electrode material positioned above the metal-containing cap material. A bottom portion of the gate electrode structure has a first length and an upper portion of the gate electrode structure has a second length that is different than the first length, wherein the first length is approximately 50 nm or less. A strain-inducing semiconductor alloy is embedded in the semiconductor region laterally adjacent to the bottom portion of the gate electrode structure, and drain and source regions are at least partially positioned in the strain-inducing semiconductor alloy.
Abstract:
In a stacked chip configuration, the “inter chip” connection is established on the basis of functional molecules, thereby providing a fast and space-efficient communication between the different semiconductor chips.
Abstract:
Performance of P-channel transistors may be enhanced on the basis of an embedded strain-inducing semiconductor alloy by forming a gate electrode structure on the basis of a high-k dielectric material in combination with a metal-containing cap layer in order to obtain an undercut configuration of the gate electrode structure. Consequently, the strain-inducing semiconductor alloy may be formed on the basis of a sidewall spacer of minimum thickness in order to position the strain-inducing semiconductor material closer to a central area of the channel region.
Abstract:
In one example, the method includes forming a plurality of isolation structures in a semiconducting substrate that define first and second active regions where first and second transistor devices, respectively, will be formed, forming a hard mask layer on a surface of the substrate above the first and second active regions, wherein the hard mask layer comprises at least one of carbon, fluorine, xenon or germanium ions, performing a first etching process to remove a portion of the hard mask layer and expose a surface of one of the first and second active regions, after performing the first etching process, forming a channel semiconductor material on the surface of the active region that was exposed by the first etching process, and after forming the channel semiconductor material, performing a second etching process to remove remaining portions of the hard mask layer that were not removed during the first etching process.
Abstract:
A semiconductor device includes a gate electrode structure of a transistor, the gate electrode structure being positioned above a semiconductor region and having a gate insulation layer that includes a high-k dielectric material, a metal-containing cap material positioned above the gate insulation layer, and a gate electrode material positioned above the metal-containing cap material. A bottom portion of the gate electrode structure has a first length and an upper portion of the gate electrode structure has a second length that is different than the first length, wherein the first length is approximately 50 nm or less. A strain-inducing semiconductor alloy is embedded in the semiconductor region laterally adjacent to the bottom portion of the gate electrode structure, and drain and source regions are at least partially positioned in the strain-inducing semiconductor alloy.