摘要:
According to one embodiment, a magnetic recording head includes a main pole having a throat height portion and a flare portion that is connected to the throat height portion, the flare portion gradually being expanded in width to an upper part in an element height direction. The head also includes a sub pole, magnetic shields disposed via a nonmagnetic layer on a trailing side of the main pole and on both sides in a track width direction of the main pole, and a coil for generating a recording magnetic field from the main pole. The nonmagnetic layer has an upper portion of which the thickness is increased stepwise or in a tapered manner in the element height direction with respect to an ABS side, and each portion of the magnetic shields adjacent to the main pole has a shape corresponding to a surface shape of the nonmagnetic layer.
摘要:
According to one embodiment, a magnetic recording head includes a main pole having a throat height portion and a flare portion that is connected to the throat height portion, the flare portion gradually being expanded in width to an upper part in an element height direction. The head also includes a sub pole, magnetic shields disposed via a nonmagnetic layer on a trailing side of the main pole and on both sides in a track width direction of the main pole, and a coil for generating a recording magnetic field from the main pole. The nonmagnetic layer has an upper portion of which the thickness is increased stepwise or in a tapered manner in the element height direction with respect to an ABS side, and each portion of the magnetic shields adjacent to the main pole has a shape corresponding to a surface shape of the nonmagnetic layer.
摘要:
Embodiments of the present invention provide a magnetic head that can stably supply a perpendicular magnetic field component while generating high recording field strength from a main pole. According to one embodiment, a magnetic body is deposited in a trailing side of a pole tip of a main pole via a nonmagnetic layer, so that a second flare section is magnetically coupled with each sidewall.
摘要:
Embodiments of the present invention provide a perpendicular magnetic recording head which can suppress reduction in recording field and efficiently reduce a fringe field. According to one embodiment, a side shield disposed at a side of each side face in a cross track direction of a main pole is arranged at a far leading side compared with the main pole.
摘要:
Embodiments of the present invention provide a perpendicular magnetic recording head which can suppress reduction in recording field and efficiently reduce a fringe field. According to one embodiment, a side shield disposed at a side of each side face in a cross track direction of a main pole is arranged at a far leading side compared with the main pole.
摘要:
Embodiments of the present invention help to reduce mag-noise in a magnetoresistive head without deterioration in reproduced output and improve the signal/noise ratio (SNR) of the magnetoresistive head. According to one embodiment, the magnetoresistive head uses a synthetic ferri free layer and it is arranged such that the magnetic field which is applied to an end of a free layer with smaller film thickness and saturation magnetization in the track width direction by a coupling field is larger than the magnetic field which is applied to it by a bias layer.
摘要:
There is provided an angle sensor and angle detection device of high output and high accuracy with a wide operating temperature range. First through eighth sensor units 511, 522, 523, 514, 531, 542, 543 and 534 are produced from spin valve magnetoresistive films that use a self-pinned type ferromagnetic pinned layer comprising two layers of ferromagnetic films that are strongly and anti-ferromagnetically coupled. The respective sensor units are produced via the formation and patterning of thin-films magnetized at angles that differ by 90°, and the formation of insulation films. By using, for the ferromagnetic films, CoFe and FeCo films that have similar Curie temperatures to make the difference in magnetization amount be zero, high immunity to external magnetic fields, a broad adaptive temperature range, and high output are realized.
摘要:
Thin film perpendicular magnetic head with a narrow main pole capable of a high recording density in excess of 100 gigabits per square inch and generating a high magnetic recording field, while also being modified to suppress remanent magnetic fields occurring immediately after writing operation. A return path is provided for supplying a magnetic flux to the main pole, and an conductive coil for excitation of the main pole and return path. The main pole has a pole width of 200 nanometers or less, and a magnetic multilayer made up of a high saturation flux density layer and low saturation flux density layer. The low saturation flux density layer and the high saturation flux density suppress remanent magnetization and prevent erasing after writing by utilizing a closed magnetic domain structure in the pole.
摘要:
Embodiments of the present invention provides sufficiently high exchange coupling with a magnetic layer and improve the yield and reliability of a magnetoresistive head. By using a tilted growth crystalline structured antiferromagnetic film manufactured by an oblique incident deposition method, a high exchange coupling field with a ferromagnetic film can be obtained. As a result, excellent reliability and high output can be obtained in a magnetoresistive head utilizing features in accordance with embodiments of the present invention.
摘要:
A magnetoresistive magnetic head according to one embodiment uses a current-perpendicular-to-plane magnetoresistive element having a laminate of a free layer, an intermediate layer, and a pinned layer, the pinned layer being substantially fixed to a magnetic field to be detected, wherein either the pinned layer or the free layer includes a Heusler alloy layer represented by a composition of X-Y-Z, wherein X is between about 45 at. % and about 55 at. % and is Co or Fe, Y accounts for between about 20 at. % and about 30 at. % and is one or more elements selected from V, Cr, Mn, and Fe, and Z is between about 20 at. % and about 35 at. % and is one or more elements selected from Al, Si, Ga, Ge, Sn, and Sb, the other layer including a high saturation magnetization material layer having higher saturation magnetization than that of the Heusler alloy, and where the direction of the current flowing perpendicular to plane being a direction in which an electron flows from the Heusler alloy layer into the high saturation magnetization material layer. Additional embodiments are also presented.