摘要:
A relay node receives from user equipments UE CQI reports which give a CQI value per radio band resource RBR, from which are aggregated across the RBRs and/or aggregated per UE across that UE's RBR values. The relay node reports an indication of the average to its controlling access node (eNodeB), either explicitly or implicitly (e.g., a gain applied to the CQI of the downlink between the relay and access nodes). The relay node also checks the UEs' buffer status (actual or predicted) and reports either periodically or based on an underflow/overflow occurrence. For periodic reports, each UE buffer experiencing the overrun/underrun is reported.
摘要:
A relay node receives from user equipments UE CQI reports which give a CQI value per radio band resource RBR, from which are aggregated across the RBRs and/or aggregated per UE across that UE's RBR values. The relay node reports an indication of the average to its controlling access node (eNodeB), either explicitly or implicitly (e.g., a gain applied to the CQI of the downlink between the relay and access nodes). The relay node also checks the UEs' buffer status (actual or predicted) and reports either periodically or based on an underflow/overflow occurrence. For periodic reports, each UE buffer experiencing the overrun/underrun is reported.
摘要:
User equipments UEs send their buffer status reports and data to a relay node RN. The RN stores the data in actual buffers per radio bearer group RBG, and stores the UEs buffer occupancies in virtual buffers per RBG. The RN then sends its own status report to the controlling eNBr with the actual buffer occupancy and information about the virtual buffer occupancy. This enables the eNBr to know in advance the volume of data incoming to the RN's actual buffers, as well as the current occupancy of those buffers, so as to better allocate radio resources. Further, the RN can take soundings of the uplink channels between UEs and the RN, which are then aggregated across the RBRs and sent to the eNBr as a special UL CQI report. The eNBr is thereby enabled to anticipate how soon the data in the UE buffers will appear in the RN's actual buffers (from the additional information of average UL CQI info and virtual buffer status), and thus better allocate the RBRs to be used for the different RBGs in the RN-eNB link as well as the optimal set of RBRs to the UE-RN link, which the RN can redistribute among the UEs that it is serving.
摘要:
User equipments UEs send their buffer status reports and data to a relay node RN. The RN stores the data in actual buffers per radio bearer group RBG, and stores the UEs buffer occupancies in virtual buffers per RBG. The RN then sends its own status report to the controlling eNBr with the actual buffer occupancy and information about the virtual buffer occupancy. This enables the eNBr to know in advance the volume of data incoming to the RN's actual buffers, as well as the current occupancy of those buffers, so as to better allocate radio resources. Further, the RN can take soundings of the uplink channels between UEs and the RN, which are then aggregated across the RBRs and sent to the eNBr as a special UL CQI report. The eNBr is thereby enabled to anticipate how soon the data in the UE buffers will appear in the RN's actual buffers (from the additional information of average UL CQI info and virtual buffer status), and thus better allocate the RBRs to be used for the different RBGs in the RN-eNB link as well as the optimal set of RBRs to the UE-RN link, which the RN can redistribute among the UEs that it is serving.
摘要:
In an exemplary embodiment there are determined which radio resource are to be used for contention based access, and the allocated radio resource is accessed according to a probability function that varies in dependence on at least one of interference measured on the allocated radio resource and a received power level for the allocated radio resource. By example the radio resource is allocated by a cellular base station for use in D2D communications; the base station provides configuration parameters for the D2D communications via common or dedicated signaling; the received power level is a target received power level that is received via broadcast system information or dedicated control signaling; and/or the received power level is itself a function of pathloss on a wireless link to the cellular base station. Embodiments are presented for method, apparatus, and tangibly stored computer program.
摘要:
A position of a device within a cluster of multiple devices is determined and stored in a memory. An uplink radio resource is mapped from a downlink radio resource in dependence on the determined position of the device within the cluster of multiple devices. In an embodiment the respective uplink and downlink radio resource is a PUCCH and PDCCH of a cellular network, and the cluster is a D2D network. In one embodiment the device position is an index j which is used to offset from a predetermined mapping pattern. In another embodiment the position of the device corresponds to an individual field of a transmission on the PDCCH and the mapping is in dependence on a bit value in the individual field.
摘要:
There is stored a database of registration information associating UEs with cells under control of different network operators. In response to a inquiry from a first network operator that a first UE desires direct communications with a second UE, the registration information is used to coordinate between the first network operator and the second network operator to facilitate establishment of a direct communication link between the first UE and the second UE. In various embodiments the facilitating is enhancing the inquiry/page by adding a cell ID of the first UE's cell and adding pre-allocated radio resources in the first UE's cell for use by the second UE in responding to the page, and determining a single network which is not highly loaded and which can allocate resources for the D2D communications and directing one or both UEs to that single network.
摘要:
In an embodiment, for a case in which there is an active connection established between a cellular network and a user equipment UE and the UE has simultaneously an active connection within a local network distinct from the cellular network, there is an indication within a resource allocation message communicated between the cellular network and the UE which is used to identify whether a radio resource allocated by the resource allocation message is for the cellular network or for the local network. In various embodiments, the local network is a D2D network and the message is directed to a C-RNTI associated with the D2D network; and/or a value of the indication identifies the allocated radio resource as an allocation for the D2D network or for the cellular network and also whether the allocation is to the UE or to a paired D2D device or to both.
摘要:
A position of a device within a cluster of multiple devices is determined and stored in a memory. An uplink radio resource is mapped from a downlink radio resource in dependence on the determined position of the device within the cluster of multiple devices. In an embodiment the respective uplink and downlink radio resource is a PUCCH and PDCCH of a cellular network, and the cluster is a D2D network. In one embodiment the device position is an index j which is used to offset from a predetermined mapping pattern. In another embodiment the position of the device corresponds to an individual field of a transmission on the PDCCH and the mapping is in dependence on a bit value in the individual field.
摘要:
An apparatus is disclosed that performs operations including determining whether an application message meets a predetermined set of criteria. If the application message meets the set, the application message is transmitted via a first communication layer pathway between the apparatus and one or more other apparatuses participating in a device-to-device communication with the apparatus. If the application message does not meet the set, the application message is transmitted via a second communication layer pathway between the apparatus and the other apparatus. The first and second communication layer pathways are different. The first pathway may be an L1 physical control channel while the second pathway may be an L1 physical data channel. The first pathway may be a first L2 logical channel while the second pathway may be a second L2 logical channel. Methods and program products are also disclosed.