摘要:
A method of forming a flash memory cell includes forming a first hard mask and a second hard mask on a substrate. A select gate is formed as a spacer around the first hard mask. A charge storage layer is formed over the first and second hard masks and the select gate. A control gate is formed as a spacer around the second hard mask. A recess in the control gate is filled with a dielectric material. The recess is formed between a curved sidewall of the control gate and a sidewall of the charge storage layer directly adjacent the curved sidewall of the control gate.
摘要:
A method of forming a flash memory cell includes forming a first hard mask and a second hard mask on a substrate. A select gate is formed as a spacer around the first hard mask. A charge storage layer is formed over the first and second hard masks and the select gate. A control gate is formed as a spacer around the second hard mask. A recess in the control gate is filled with a dielectric material. The recess is formed between a curved sidewall of the control gate and a sidewall of the charge storage layer directly adjacent the curved sidewall of the control gate.
摘要:
An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.
摘要:
A process for forming a buried contact (50) in a semiconductor device (20) which avoids etch damage to the substrate and forms a self-aligned, low resistance contact to a silicon substrate (22) is provided. After forming a contact opening (32) through overlying insulating and conducting layers (24, 28,30), a silicide region (40) is formed in the substrate at the contact surface (34) exposed by the contact opening (32). A refractory metal silicide which provides high etching selectivity to polysilicon is formed in the substrate at the contact surface (34) by either a blanket deposition of a refractory metal into the contact opening (32), or alternatively, by a selective deposition process using contact surface (34) as a nucleation site. In a preferred embodiment, a cobalt or tantalum silicide region (40) is formed in the substrate at the contact surface (34) and a conductive layer (42) is deposited and etched to form an interconnect (48) contacting the silicide region (40). The high etching selectivity obtainable between the conductive layer ( 42) and the silicide region (40) avoids damage to the substrate surface providing improved device performance.
摘要:
An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.