Abstract:
Embodiments of the present invention provide a control system for a motor vehicle comprising: means for detecting a side-slope condition in which a vehicle is traversing a side-slope; and means for controlling an amount of torque applied to one or more wheels to induce a turning moment on a vehicle, the system being configured to cause a turning moment to be induced in a direction opposing side-slip of a trailing axle in a down-slope direction relative to a leading axle.
Abstract:
A method of controlling the brake system of a vehicle. The method includes receiving one or more electrical signals each indicative of a value of a respective vehicle-related parameter. The method further includes detecting that the vehicle is traveling across a slope based on the value(s) of one or more of the vehicle-related parameters. The method still further includes automatically modifying the amount of brake torque being applied to at least certain of the wheels of the vehicle in response to the detection of the vehicle traveling across a slope by increasing the amount of brake torque being applied to one or more wheels on one side of the vehicle, and decreasing the amount of brake torque being applied to one or more wheels on the other side of the vehicle.
Abstract:
A traction control system for a motor vehicle includes a controller configured to initiate a traction control intervention at one or more vehicle wheels. The controller is configured to inhibit the traction control intervention in dependence on a reduced wheel load condition in said one or more wheels. The reduced wheel load condition is identified based on at least one of a signal indicative of vehicle pitch and a signal indicative of vehicle heave.
Abstract:
A vehicle control system for a vehicle having a plurality of wheels, the vehicle speed control system being operable to receive an input signal corresponding to a rate of change of an angle of pitch of the vehicle, pitch rate, the system being operable to command a change in an amount of torque applied to at least one of the plurality of wheels in dependence on the pitch rate.
Abstract:
A motor vehicle controller configured to reduce net drive torque applied to one or more driving wheels of a first axle of a driveline when an amount of slip of a driving wheel of the first axle exceeds a first predetermined threshold value. The controller controls torque applied to wheels of a second axle and determines when the vehicle is operating in a split-mu condition in which slip of a driving wheel on one side of each of the two axles exceeds that of a driving wheel on an opposite side of the axles by more than a predetermined amount. The controller performs a split-mu mitigation operation by reducing net torque applied to a driving wheel of the axle that is experiencing the greater slip when an amount of slip of that driving wheel exceeds a second predetermined threshold value less than the first predetermined threshold value.
Abstract:
A control system for a vehicle operable to control a driveline of a vehicle to vary and amount of torque coupling between first and second groups of one or more wheels, the control system being operable automatically to cause application of brake torque to a wheel of the first or second groups of one or more wheels in response to detection of loss of traction of one or more wheels, wherein if the amount of brake torque or brake pressure of a braking system employed to apply the brake torque exceeds a threshold value in response to the detection of loss of traction, the control system is operable to cause the driveline to reduce the amount of torque coupling between the first and second groups of wheels.
Abstract:
Aspects of the present invention relate to a control system for controlling torque distribution between a first axle (110) and a second axle (120) in a vehicle (100), the control system comprising one or more controllers. The control system is configured to detect that the vehicle is in overrun and detect the vehicle speed. When the vehicle is in overrun and the vehicle speed is below a first speed threshold then the torque distribution is controlled to reduce overrun torque to the first axle and to increase overrun torque to the second axle. The vehicle may be a hybrid vehicle comprising an internal combustion engine (ICE) (201), a belt integrated starter generator (B-ISG) (205) and an electric rear axle drive (ERAD) (204).
Abstract:
A method of automatically controlling the speed of a vehicle as the vehicle traverses a water obstacle. The method includes the step of detecting that the vehicle has entered a water obstacle. The method further includes the step of determining a depth of the water proximate the vehicle based on readings or information received from, for example, one or more sensors or other components of the vehicle. And when the depth of the water exceeds a predetermined depth, the method still further includes the step of automatically reducing the speed of the vehicle such that a bow wave created in the water by the vehicle propagates ahead of the vehicle and in an intended direction of travel of the vehicle. A system for implementing the methodology is also provided.
Abstract:
A motor vehicle control system operable in a steering assist mode in which the system is configured to: detect steering angle; and control a distribution of torque to one or more wheels of the vehicle in dependence on the detected steering angle thereby to induce a turning moment in the direction of turn indicated by the steering angle.
Abstract:
A method of managing the deceleration of a vehicle. The method comprises receiving a brake command and determining an actual rate of deceleration of the vehicle. The method further comprises monitoring the speed of the vehicle as the vehicle decelerates in response to the brake command. The method still further comprises modifying the amount of brake torque being applied to one or more wheels of the vehicle when the vehicle speed reaches a predetermined threshold, by first decreasing the amount of brake torque being applied and then subsequently increasing the amount of brake torque being applied to bring the vehicle to a standstill. A system for implementing the methodology is also provided.