Abstract:
A method comprising: receiving, by an electronic device, a first signal having a first frequency; identifying, by the electronic device, at least one of a strength of the first signal or a signal-to-noise ratio of the first signal; outputting, by the electronic device, a second signal having a second frequency that is different from the first frequency, the second signal being output based on at least one of the strength of the first signal or the signal-to-noise ratio of the first signal; receiving the second signal by the electronic device; and detecting whether the electronic device is at least partially immersed in a liquid based on the received second signal.
Abstract:
A measurement device is provided for determining a distance of the measurement device from a medium and a flow speed of a medium by evaluating a transmission signal emitted by the fill level measurement device and reflected by the medium. The measurement device includes an antenna arrangement for emitting the transmission signal in two different directions. The flow speed of the medium can be determined using the Doppler shift of the transmission signal.
Abstract:
A sensor assembly is provided for detecting a concentration of a fluid. The sensor assembly includes a sensing unit and a cover assembly. The sensing unit includes a transmitter configured to transmit a signal into a sensing volume and a receiver configured to receive the signal after the signal passes through a portion of the sensing volume. The cover assembly at least partially encloses the sensing volume and is substantially impermeable to a gas portion of the fluid. The cover assembly includes apertures defined therein which are permeable to the gas portion of the fluid. A first plurality of apertures are defined along a top surface of the cover assembly.
Abstract:
A wireless sensor network including a number of wireless modules for monitoring sensors associated with stationary assets. A wireless module includes a wireless transceiver, a processor, a location acquisition unit, configured to acquire a location item identifying a location of the wireless module, and a memory.
Abstract:
Embodiments of apparatus for sensing a level of a processing medium in a chemical delivery apparatus are provided herein. In some embodiments, a chemical delivery apparatus includes: a support structure; a container coupled to the support structure to hold a chemical precursor within an interior of the container; an excitation source configured to cause vibrations in an exterior surface of the container; and a measurement device configured to measure a frequency of the vibrations.
Abstract:
A device for measuring the level of a liquid within a container, in particular the level of liquid gas, comprises a housing and a piezoelectric element adapted for generating vibrations when energized. A coupling pad is provided which is bonded to the piezoelectric element for transmitting the vibrations to a surface of the container. Further, a non-tilting element is provided which surrounds the coupling pad. A method for measuring the level of liquid within a container uses a piezoelectric element for generating vibrations which are transmitted into the shell of the container. An analyzing strategy is used which distinguishes between normal post-pulse oscillations of the piezoelectric element after a measurement was triggered, and extended post-pulse oscillations which are the result of echoed oscillations in the shell of the container.
Abstract:
A system for estimating a flowable substrate level in a storage unit is disclosed. In one embodiment, the system includes a transmitter and a conductor that extend downwardly into a grain storage bin, which cycles through a range of frequencies in order to determine the resonant frequency of the conductor which changes depending on the amount of grain in the bin.
Abstract:
A liquid storage device includes: a liquid storage having a storage chamber for storing liquid; first communication devices each for transmitting a radio wave for carrying out short distance wireless communication; a second communication device for receiving the radio wave transmitted from each first communication device; and a controller. The first communication devices are arranged in a configuration corresponding to a direction of movement of a boundary surface between a liquid stored area and a liquid non-stored area in the storage chamber. The movement is caused by increase or decrease of an amount of the liquid in the storage chamber. The storage chamber is partly interposed between the second communication device and the first communication devices. The controller detects a position of the boundary surface based on a reception status of the radio wave transmitted from each first communication device and received by the second communication device.
Abstract:
A model is based on noise-suppression technique in level indicators that uses mutually independent mathematical models, the quality of each of which models is calculated by comparing with measured values. The models are then weighted and combined, or a single model is selected, in order to calculate the level at a later point in time. Effective noise suppression may be achieved by these means.