Abstract:
A variable linked braking system controlled by motorcycle speed includes a brake master cylinder; a hydraulic pressure proportion variable valve connected to the brake master cylinder by an oil path; front and rear brake units connected to the hydraulic pressure proportion variable valve by first and second oil paths, respectively; a hydraulic pressure proportion controller for controlling the hydraulic pressure proportion variable valve; a motorcycle speed sensor for converting a sensed motorcycle speed into a speed signal and sending the speed signal to the hydraulic pressure proportion controller; and a brake switch for starting the brake master cylinder and sending a brake signal to the hydraulic pressure proportion controller for controlling the hydraulic pressure distribution proportion of the hydraulic pressure proportion variable valve so that the ratio of braking force of the front brake unit to braking force of the rear brake unit increases with the motorcycle speed.
Abstract:
A method of controlling a controllable chassis system or a safety system (44) for a vehicle (10) includes determining an added mass placed on the vehicle and relative to a known vehicle mass. A vehicle characteristic is adjusted in response to the added mass. A control system (18) for an automotive vehicle (10) includes a sensor (20, 28-42) that generates a signal. A controller (26) determines added mass on the vehicle (10) in response to the signal and adjusts a vehicle characteristic in response to the added mass.
Abstract:
The present invention provides a motorcycle braking device which can perform a control which does not give discomforts to a rider in a front and rear wheel interlocking brake control by taking a manipulation of the rider into consideration. In the motorcycle braking device according to the present invention, in a front and rear wheel interlocking brake control, an additional target pressure associated with a brake input pressure of one of a front wheel hydraulic circuit and a rear wheel hydraulic circuit is applied to another wheel driven by the front wheel hydraulic circuit or the rear wheel hydraulic circuit.
Abstract:
The vehicle motion control device performs anti-lateral overturn control for increasing a brake force to be generated at a front inside wheel of a vehicle in order to cause skidding at the front inside wheel when a condition for increasing a brake force to be generated at an outside wheel is satisfied, wherein the condition is that the vehicle motion control device is in the anti-lateral overturn mode and the vehicle is turning.
Abstract:
A stability control apparatus, includes: a grip detector that changes an output based on a grip force applied in a direction hindering a slippage of a wheel, acting on a contact face between the wheel supported by a wheel supporting rolling bearing unit and the road surface, the wheel supporting rolling bearing unit for supporting freely rotatably the wheel to a vehicle body; and a controller that performs a control for keeping a running stability of the vehicle in response to an input of a detection signal of the grip detector.
Abstract:
A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A–C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
Abstract:
The present device relates to a system and method for controlling the driving stability of a vehicle utilizing variables that characterize a driving situation of the vehicle and are detected in a process. The system and method include determining an expected future behavior of the vehicle, checking the expected future driving behavior with respect to a critical driving situation and executing a vehicle intervention during stable driving conditions to prevent the vehicle from entering a critical driving situation. The intervention may include a brake intervention or an engine intervention.
Abstract:
A control system (18) and method for an automotive vehicle (10) includes a roll rate sensor (34) generating a roll rate signal, a lateral acceleration sensor (32) generating a lateral acceleration signal, a longitudinal acceleration sensor (36) generating a longitudinal acceleration signal, and a yaw rate sensor (28) generating a yaw rate signal. A safety system (44) and the sensors are coupled to a controller. The controller (26) determines an added mass and the height of the added mass or a roll gradient, a roll acceleration coefficient and/or a roll rate parameter that take into account the added mass and height from the roll rate, the lateral acceleration, the longitudinal acceleration, and the yaw rate and controlling the safety system in response thereto.
Abstract:
The invention relates to a method for stabilizing a car-trailer combination, including a towing vehicle and a trailer moved by the towing vehicle. The rolling motions of the towing vehicle are monitored to detect an actual or expected unstable driving performance of the towing vehicle or car-trailer combination. Measures are taken to stabilize the driving performance when an unstable driving performance is detected or expected. These measures may include decelerating the towing vehicle dependent upon the amplitudes of the rolling motions.
Abstract:
A control system for an automotive vehicle having a vehicle body includes a sensor cluster having a housing oriented within the vehicle body. A roll rate sensor is positioned within the housing and generates a roll rate sensor signal corresponding to a roll angular motion of the sensor housing. A controller receives the roll rate sensor signal and generates a reference roll angle. The controller also compares the reference roll angle to the roll rate sensor signal and generates a roll rate sensor fault signal in response a fault determined in said roll rate sensor.