摘要:
An adherent antimicrobial coating and method of making same comprising hydrogenated amorphous carbon and a dispersion of antimicrobial metal ions adapted to maintain a therapeutically effective zone of inhibition.
摘要:
The present invention provides a diamond like carbon coating comprising a surface comprising an interface and a lubricant film, said interface comprising atomic bonds between atoms in said diamond-like carbon coating and atoms in said lubricant precursor film. The invention also provides a method for producing said coating, interface, and film.
摘要:
A method is disclosed for substantially uniformly coating an interior surface of a ferromagnetic tubular structure such as a ferromagnetic tube having a high aspect ratio. The method entails inducing a magnetic field of a given magnitude within the tubular structure. Further, a bias is applied at a given voltage to the tubular structure. Then, the interior surface of the tubular structure is exposed to a gaseous precursor material under conditions effective to convert a quantity of the gaseous precursor material to ionize gaseous precursor material. The given magnitude and voltage is such that it is effective to deposit the ionized the gaseous precursor material onto the interior surface and converts the ionized gaseous precursor material to a substantially uniform protective coating in the interior surface.
摘要:
Tubular structures having aspect ratios of at least about 3 and comprising interior surfaces comprising substantially uniform coatings generated from a gaseous precursor material.
摘要:
Methods for coating the interior surface of tubular structures having high aspect ratios and tubular structures produced by such methods. The interior surface of the tubular structure is coated by inducing a magnetic field having a given magnitude around a circumference along a length of the tubular structure, applying a bias at a given voltage to the tubular structure, and exposing the interior surface to a precursor material to deposit the precursor material onto the interior surface of the tubular structure.
摘要:
This invention is directed to a method of preventing oxidation of copper alloys at high temperatures by deposition of a nano-structured, low-chromium copper-chromium protective coating to copper-alloy components. The coatings of the present invention are applied by an ion beam assisted, electron beam physical vapor deposition and consist of copper and chromium particles having a diameter of about 10 nm. This invention also encompasses the coated copper-alloy components produced by the disclosed deposition methods.
摘要:
This invention is a method for metal plasma ion implantation and metal plasma ion deposition, comprising: providing a vacuum chamber with at least one workpiece having a surface positioned on a worktable within the vacuum chamber; reducing the pressure in the vacuum chamber; generating a plasma of metal ions within the vacuum chamber, applying a negative bias to the worktable to thereby accelerate metal ions from the plasma toward at least one workpiece to thereby either implant metal ions into or deposit metal ions onto the workpiece or both. This invention includes an apparatus for metal ion implantation and metal ion plasma deposition, comprising: a vacuum chamber, a metal plasma generator within the vacuum chamber, and at least one worktable within the vacuum chamber.
摘要:
Superalloy substrates bearing a rhenium diffusion barrier, and a method of forming a rhenium diffusion barrier between a superalloy substrate and an overlay coating comprising aluminum. The method involves depositing a rhenium film onto the surface of a superalloy substrate and subjecting the rhenium film to first conditions effective to cause a minor portion of rhenium atoms to penetrate the surface of the superalloy substrate and second conditions effective to cause a minority of the rhenium atoms to diffuse into the substrate, forming a diffusion barrier comprising an interfacial zone comprising a mixture of rhenium atoms and atoms of the superalloy substrate covered by a rhenium film. The diffusion barrier is effective to suppress diffusion of aluminum from the overlay coating under static oxidation testing conditions.