Abstract:
A method of removing contaminant particles from faceplates in newly fabricated field emission displays so that a uniform distribution of contaminants is achieved at the emitter sites of the display. During the initial operation of a field emission dislay device contaminants are removed from the display faceplate by electron induced desorption. The emission current profile at the emitter sites is selected so that the distribution of readsorbed contaminants is equalized. The variations in current emission compensate for shadowing effects due to spacer walls to produce a uniform readsorption distribution. The emitter sites may driven using an animated contrast image at a constant current for the display.
Abstract:
A circuit and method for turning-on and turning-off elements of an field emission display (FED) device to protect against emitter electrode and gate electrode degradation. The circuit includes control logic having a sequencer which in one embodiment can be realized using a state machine. Upon power-on, the control logic sends an enable signal to a high voltage power supply that supplies voltage to the anode electrode. At this time a low voltage power supply and driving circuitry are disabled. Upon receiving a confirmation signal from the high voltage power supply, the control logic enables the low voltage power supply which supplies voltage to the driving circuitry. Upon receiving a confirmation signal from the low voltage power supply, or optionally after expiration of a predetermined time period, the control logic then enables the driving circuitry which drives the gate electrodes and the emitter electrodes which make up the rows and columns of the FED device. Upon power down, the control logic first disables the low voltage power supply, then the high voltage power supply. The above may occur upon each time the FED is powered-on and powered-off during the normal operational use of the display. By so doing, embodiments of the present invention reduce emitter electrode and gate electrode degradation by restricting electron emission from the emitter electrode directly to the gate electrode.
Abstract:
A releasing and post-releasing method for making a micromirror device and a micromirror array device are disclosed herein. The releasing method removes the sacrificial materials in the micromirror and micromirror array so as to enabling movements of the movable elements in the micromirror and micromirror array device. The post-releasing method is applied to improve the performance and quality of the released micromirrors and micromirror array devices.
Abstract:
The invention provides an apparatus for reducing speckle in a projection visual display (PVD) system, a method of reducing visible speckle in a PVD system and a PVD system incorporating the method or apparatus. In one embodiment, the apparatus includes a diffuser interposable in an optical path of a PVD system and a diffuser actuator having a single drive axis configured to cause the diffuser to travel in a lissajous curve at least partially transverse to the optical path.
Abstract:
A light-emitting device contains getter material (58) typically distributed in a relatively uniform manner across the device's active light-emitting portion. An electron-emitting device similarly contains getter material (112, 110/112, 128, 132, and 142) typically distributed relatively uniformly across the active electron-emitting portion of the device.
Abstract:
In a flat-panel display structure having a spacer with laterally segmented face electrodes, one embodiment of the present invention defines the length of the laterally segmented face electrode sections to minimize zero current shift variation in electron trajectories. Advantageously, the present embodiment of the invention prevents image quality degradation. In one embodiment, values for variation in the uniformity of and dicing tolerance are combined to calculate a design optimum for the length of laterally segmented face electrodes. Zero current shift variation from fluctuations in wall resistance falls off with the length of laterally segmented face electrodes. Zero current shift due to first order angular alignment during dicing varies linearly with the dashed electrode length. In one embodiment of the present invention, an optimal value is calculated by combining these effects to minimize zero current shift. Advantageously, in one embodiment, the electrode segments are individually testable.
Abstract:
The present invention is directed to methods for making electronic devices with a thin anisotropic conducting layer interface layer formed between a substrate and an active device layer that is preferably patterned conductive layer. The interface layer preferably provides Ohmic and/or rectifying contact between the active device layer and the substrate and preferably provides good adhesion of the active device layer to the substrate. The active device layer is preferably fashioned from a nanoparticle ink solution that is patterned using embossing methods or other suitable printing and/or imaging methods. The active device layer is preferably patterned into an array of gate structures suitable for the fabrication of thin film transistors and the like.
Abstract:
A field emission display (FED) having a correction system with a correction coefficient derived from emission current is presented. Within one embodiment in accordance with the present invention, a field emission display has an anode at the faceplate and a focus structure. The anode potential is held at ground while the focus structure potential is held between, but is not limited to, 40 and 50 volts. The current flowing to the focus structure is measured and used as the basis for the correction coefficient for the field emission display.
Abstract:
A flat-panel cathode-ray tube display contains electron-emissive regions (54) spaced non-uniformly apart from one another in a line of the electron-emissive regions so as to better utilize the space where the electron-emissive regions are located. Alternatively or additionally, electron focusing can be appropriately made more concentrated by implementing each electron-emissive region as two or more portions 54A-54F) situated suitably with respect to openings (86A-86F) in an electron-focusing system (76).
Abstract:
A scanner is provided that can read two-dimensional barcodes from reflective or emissive electronic displays. Illumination, exposure, and contrast can be automatically adjusted according to the type of display and variations in brightness or reflectivity. The scanner includes an imaging camera with high spectral response for reading from color displays. The scanner can also adapt to read barcodes from displays with non-square pixels.