摘要:
Modifying a layout of an integrated circuit (IC) based on a function of an interconnect therein and a related circuit and design structure are disclosed. In one embodiment, a method includes identifying a function of an interconnect in the layout from data of the layout embodied in a computer readable medium; and modifying the layout to form another layout that accommodates the function of the interconnect. A design structure embodied in a machine readable medium used in a design process, according to one embodiment, may include a circuit including a high voltage interconnect positioned in a dielectric layer, the high voltage interconnect positioned such that no fill is above or below the high voltage interconnect.
摘要:
A gate stack comprising a uniform thickness gate dielectric, a gate electrode, and an oxygen-diffusion-resistant gate cap is formed on a semiconductor substrate. Thermal oxidation is performed only on the drain side of the gate electrode, while the source side is protected from thermal oxidation. A thermal oxide on the drain side sidewall of the gate electrode is integrally formed with a graded thickness silicon oxide containing gate dielectric, of which the thickness monotonically increases from the source side to the drain side. The thickness profile may be self-aligned to the drain side edge of the gate electrode, or may have a portion with a self-limiting thickness. The graded thickness profile may be advantageously used to form a lateral diffusion metal oxide semiconductor field effect transistor providing an enhanced performance.
摘要:
Modifying a layout of an integrated circuit (IC) based on a function of an interconnect therein and a related circuit and design structure are disclosed. In one embodiment, a method includes identifying a function of an interconnect in the layout from data of the layout embodied in a computer readable medium; and modifying the layout to form another layout that accommodates the function of the interconnect. A design structure embodied in a machine readable medium used in a design process, according to one embodiment, may include a circuit including a high voltage interconnect positioned in a dielectric layer, the high voltage interconnect positioned such that no fill is above or below the high voltage interconnect.
摘要:
A gate stack comprising a uniform thickness gate dielectric, a gate electrode, and an oxygen-diffusion-resistant gate cap is formed on a semiconductor substrate. Thermal oxidation is performed only on the drain side of the gate electrode, while the source side is protected from thermal oxidation. A thermal oxide on the drain side sidewall of the gate electrode is integrally formed with a graded thickness silicon oxide containing gate dielectric, of which the thickness monotonically increases from the source side to the drain side. The thickness profile may be self-aligned to the drain side edge of the gate electrode, or may have a portion with a self-limiting thickness. The graded thickness profile may be advantageously used to form a lateral diffusion metal oxide semiconductor field effect transistor providing an enhanced performance.
摘要:
A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.
摘要:
A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.
摘要:
A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.
摘要:
A disposable structure displaced from an edge of a gate electrode and a drain region aligned to the disposable structure is formed. Thus, the drain region is self-aligned to the edge of the gate electrode. The disposable structure may be a disposable spacer, or alternately, the disposable structure may be formed simultaneously with, and comprise the same material as, a gate electrode. After formation of the drain regions, the disposable structure is removed. The self-alignment of the drain region to the edge of the gate electrode provides a substantially constant drift distance that is independent of any overlay variation of lithographic processes.
摘要:
A dielectric material layer is formed on a bottom surface and sidewalls of a trench in a semiconductor substrate. The silicon oxide layer forms a drift region dielectric on which a field plate is formed. Shallow trench isolation may be formed prior to formation of the drift region dielectric, or may be formed utilizing the same processing steps as the formation of the drift region dielectric. A gate dielectric layer is formed on exposed semiconductor surfaces and a gate conductor layer is formed on the gate dielectric layer and the drift region dielectric. The field plate may be electrically tied to the gate electrode, may be an independent electrode having an external bias, or may be a floating electrode. The field plate biases the drift region to enhance performance and extend allowable operating voltage of a lateral diffusion field effect transistor during operation.
摘要:
A dielectric material layer is formed on a bottom surface and sidewalls of a trench in a semiconductor substrate. The silicon oxide layer forms a drift region dielectric on which a field plate is formed. Shallow trench isolation may be formed prior to formation of the drift region dielectric, or may be formed utilizing the same processing steps as the formation of the drift region dielectric. A gate dielectric layer is formed on exposed semiconductor surfaces and a gate conductor layer is formed on the gate dielectric layer and the drift region dielectric. The field plate may be electrically tied to the gate electrode, may be an independent electrode having an external bias, or may be a floating electrode. The field plate biases the drift region to enhance performance and extend allowable operating voltage of a lateral diffusion field effect transistor during operation.