摘要:
A method for correcting truncated projection data of a rotation for a reconstruction technique for computed tomography scans with truncated projection data in the computed tomography images produced by a C-arm is proposed. At least one truncated projection is recorded. The truncated portions prior to acquisition of the rotation for the at least one truncated projection is captured. The truncated projection and the truncated portions are assembled into at least one complete projection. Truncated projection data is acquired during the rotation. The truncated data is estimated based on a model of the patient geometry from the at least one complete projection. A reconstruction technique is performed on the basis of the acquired and the estimated data.
摘要:
The invention relates to a method for presenting interventional instruments in a 3D data set of an anatomy to be treated. A 3D data set of the anatomy is recorded before introduction of an interventional instrument. Once the interventional instrument has been applied, the spatial position of the instrument is determined by x-ray fluoroscopy from images created at two different angulations. A 3D model of the instrument is formed from the x-ray images. The 3D model of the instrument is fused with the 3D data set of the anatomy. A 3D hologram is reproduced from the fused 3D data set. The 3D hologram is repeatedly reproduced in real time to follow the application of the instrument in the presentation.
摘要:
A method and system for intraoperative guidance in an off-pump mitral valve repair procedure is disclosed. A plurality of patient-specific models of the mitral valve are generated, each from pre-operative image data obtained using a separate imaging modality. The pre-operative image data from the separate imaging modalities are fused into a common coordinate system by registering the plurality of patient-specific models. A model of the mitral valve is estimated in real-time in intraoperative image data using a fused physiological prior resulting from the registering of the plurality of patient-specific models.
摘要:
A method and system for intraoperative guidance in an off-pump mitral valve repair procedure is disclosed. A plurality of patient-specific models of the mitral valve are generated, each from pre-operative image data obtained using a separate imaging modality. The pre-operative image data from the separate imaging modalities are fused into a common coordinate system by registering the plurality of patient-specific models. A model of the mitral valve is estimated in real-time in intraoperative image data using a fused physiological prior resulting from the registering of the plurality of patient-specific models.
摘要:
A method for correcting truncated projection data of a rotation for a reconstruction technique for computed tomography scans with truncated projection data in the computed tomography images produced by a C-arm is proposed. At least one truncated projection is recorded. The truncated portions prior to acquisition of the rotation for the at least one truncated projection is captured. The truncated projection and the truncated portions are assembled into at least one complete projection. Truncated projection data is acquired during the rotation. The truncated data is estimated based on a model of the patient geometry from the at least one complete projection. A reconstruction technique is performed on the basis of the acquired and the estimated data.
摘要:
A method for calculating perfusion data, such as blood volume or blood flow from 2-D angiography data or DSA sequences, is proposed. An angiography scene is recorded using specific acquisition parameters to generate the 2-D angiography data or DSA sequences with administration of contrast agent based on a multiplicity of individual angiography images. A region of interest is defined suitable for comparison purposes. The volume segments are defined by the region of interest. The time/contrast curve is determined in the volume segments. Perfusion data for calculating the relative perfusion data is ascertained. The perfusion data is compared and the relative perfusion data is calculated. The calculated relative perfusion data is not specified in terms of absolute physical quantities, but is provided simply as ratios, such as left/right or before/after.
摘要:
The disclosure relates to a device and a method for ascertaining at least one individual fluid-dynamic characteristic parameter of a stenosis in a vascular segment having a plurality of serial stenoses, wherein angiography image data of the vascular segment is received from an angiography recording device, geometry data of the vascular segment is ascertained by an analysis device based on the angiography image data and combined into a segment model. At least one division point located between two of the stenoses respectively is ascertained by a dividing device in the segment model, the segment model is subdivided into subsegment models at each of the at least one division points, and the respective fluid-dynamic characteristic parameter is ascertained by a simulation device for at least one of the subsegment models based on respective geometry data of the subsegment model.
摘要:
An imaging method for enhanced visualization of vessels in an examination region of a patient, in particular during an intervention, is proposed. A 3D reconstruction image of the examination region is generated using a preoperatively recorded 3D image dataset of the examination region. At least one current 2D fluorescence image of the examination region is recorded by a fluorescence angiography. The vessels are identified. The 3D image dataset with the image dataset of the 2D fluorescence or ultrasound image is registered based on the result of the identification. The 3D reconstruction image and the 2D image are overplayed. The overlaid images are 3D played back.
摘要:
An imaging method for enhanced visualization of vessels in an examination region of a patient, in particular during an intervention, is proposed. A 3D reconstruction image of the examination region is generated using a preoperatively recorded 3D image dataset of the examination region. At least one current 2D fluorescence image of the examination region is recorded by a fluorescence angiography. The vessels are identified. The 3D image dataset with the image dataset of the 2D fluorescence or ultrasound image is registered based on the result of the identification. The 3D reconstruction image and the 2D image are overplayed. The overlaid images are 3D played back.
摘要:
An angiographic method is provided. The method includes: identification of a relevant part in acquired angiography 4D sequences which exhibit a vascular disorder or change; determination of a centerline for the part; ascertainment of lines parallel and surrounding the centerline; specification of perpendicular cross-sections; determination of voxels; ascertainment of bolus curves as a function of time for each voxel; which intersects one of the cross-sections; determination of a time for each voxel; measurement of the true Euclidean distance between voxels at the positions along the centerline and the parallel lines; division of the measured distance by the time difference; determination of second speed components, running transversely, proportional to the relative change in mass for each voxel; and calculation of the blood flow in the relevant part of the vascular system on the basis of the speed components.