摘要:
The invention relates to an organic light-emitting device (OLED) comprising at least: a first electrode (102); a second electrode (105); an organic light emissive layer (104) arranged between said first electrode and said second electrode; and an organic charge transport layer (103) arranged between said first electrode and said emissive layer, wherein i) the charge transport layer is patterned or provided with a periodic surface structure on a surface of the charge transport layer facing the emissive layer, and/or ii) an alignment layer (406) which allows for charge transport to the emissive layer is provided between said charge transport layer and said emissive layer, which alignment layer promotes alignment of the optical dipoles of molecules of said light emissive layer towards a common preferred direction of the molecular axes. The use of the patterned or structured charge transport layer and/or the alignment layer provides improved light out coupling from the OLED layer stack, i.e. increased external quantum efficiency.
摘要:
The invention provides an organic light-emitting device (OLED) comprising: a transparent substrate; a first, transparent electrode layer arranged on said substrate; one or more organic light-active layers arranged on said first electrode layer; a second electrode layer arranged on said one or more organic light-active layers; and a discontinuous layer comprising discrete, randomly distributed nanometer-sized domains of a low refractive index material, arranged between said first electrode layer and said one or more organic light-active layers. The discontinuous layer of discrete, randomly distributed nano-sized domains increases the light extraction efficiency of the OLED.
摘要:
The invention provides an organic light-emitting device (OLED) comprising: a transparent substrate; a first, transparent electrode layer arranged on said substrate; one or more organic light-active layers arranged on said first electrode layer; a second electrode layer arranged on said one or more organic light-active layers; and a discontinuous layer comprising discrete, randomly distributed nanometer-sized domains of a low refractive index material, arranged between said first electrode layer and said one or more organic light-active layers. The discontinuous layer of discrete, randomly distributed nano-sized domains increases the light extraction efficiency of the OLED.
摘要:
This invention relates to a method for forming a patterned layer on a substrate by means of an imprint process. According to the method a first layer is provided on the substrate, and a pattern of recesses is provided in the first layer by imprinting the layer with a patterning means. Then the first layer is cured. The curing is followed by performing a first surface treatment onto the first layer to make the surface of thereof hydrophilic, and then performing a second surface treatment onto a selected subarea of the surface of the first layer to make the. subarea hydrophobic. The subarea includes surface portions between the recesses and excludes the recesses. Finally, a conducting pattern material (41) is deposited into the recesses.
摘要:
A semiconductor light emitting diode (1, LED), comprising a first and a second electrode (40, 11) for applying a voltage across an active region (4) for generation of light, a light emitting surface (6), and a plurality of photonic crystals (101, 102). Further, at least two photonic crystals (101, 102) of a first and a second type are adapted to extract light from the active region (4) and differ from each other with respect to at least one lattice parameter. Each of said at least two photonic crystals (101, 102) are associated with a respective far field pattern, wherein an arrangement of said plurality of photonic crystals (101, 102) is provided to arrange said at least two photonic crystals (101, 102). In this manner, a far field pattern is created by combining the respective far field patterns associated with each of said at least two photonic crystals (101, 102).
摘要:
An inorganic phosphor body (102) for a light emitting diode, comprising an inorganic luminescent material is provided. A bonding precursor material (103) is arranged on a surface of said inorganic phosphor body (102), and the bonding precursor material comprises an at least partly hydrolyzed organically modified silane. The attachment of the bonding precursor material to the inorganic phosphor body is separated from the bonding of the inorganic phosphor body to a light emitting diode. Thus, the attachment of the bonding precursor material to the inorganic phosphor body may be performed at conditions detrimental to the LED.
摘要:
The matching of refractive index of a nanoporous membrane with an analyte solution used with the membrane for use in a sensor is described. Scattering of the excitation and/or emitted light is reduced by matching the refractive indices. This improves efficiency when the porous translucent membrane is used in flow-through or flow-over sensors such as biosensors.
摘要:
The present invention relates to a silicone rubber like material and a printing device including a stamp layer (100;201) comprising such a material. The material is suitable for use in soft lithography as it enables stable features having dimensions in the nanometer range to be obtained on a substrate, and also allows for the accommodation onto rough and non-flat substrate surfaces. The invention also relates to methods for manufacturing the silicone rubber like material and stamp layer (100;201) and use thereof in lithographic processes.
摘要:
A method for the production of a light emitting device is provided, comprising providing at least one LED 10 and at least one optical element 13; arranging a bonding material 12, comprising a stable colloidal sol of inorganic metal oxide nanoparticles dispersed in a liquid medium, on a light emitting surface 11 of said at least one LED and/or on a surface of said at least one optical element 13; (c) placing said at least one optical element 13 on the light emitting surface 11 of said at least one LED 10 with said bonding material 12 there between to form at least one assembly; and curing said bonding material to form an inorganic bond.The bonding material may be cured at temperatures not detrimental to the LED, while the resulting bond is photo-thermally stable.
摘要:
A method of manufacturing a component having a three-dimensional structure in a surface region, includes:—a step of forming a substantially solid layer (13) of material, which step comprises the steps of applying a substantially fluid composition over a surface, and—a step of removing an intermediate composition (12), impervious to at least a component of the substantially fluid composition and occupying at least part of the three-dimensional structure when the substantially fluid composition has at least partially set. The step of forming the substantially solid layer (13) of material is preceded by the steps of—providing a structure including recessed parts (5 to 7) on a surface of a substantially solid further layer (3), and—applying the intermediate composition (12) so as at least partially to fill at least the recessed parts (5 to 7) of the structure on the surface of the substantially solid further layer (3).