摘要:
Described is a sputtering target assembly of high purity copper diffusion bonded to a precipitation hardened aluminum alloy backing plate via an intermediate layer of a CuCr alloy and in which the copper contains a micro alloy addition of at least one of Ag, Su, Te, In, Mg, B, Bi, Sb and/or P. Also disclosed is a method that includes preparation of a master alloy for addition to high purity copper and fabricating, heat treating and diffusion bonding processes to produce a sputtering target assembly with a stable fine-grained target microstructure.
摘要:
The invention includes a sputtering target containing copper of a purity of at least about 99.999 wt. %, and at least one component selected from the group consisting of Ag, Sn, Te, In, B, Bi, Sb, and P dispersed within the copper. The total of Ag, Sn, Te, In, B, Bi, Sb, and P within the copper is from at least 0.3 ppm to about 10 ppm. The sputtering target has a substantially uniform grain size of less than or equal to about 50 micrometers throughout the copper and the at least one component.
摘要:
The invention includes a method of forming a sputtering target containing copper of a purity of at least about 99.999 wt. %, and at least one component selected from the group consisting of Ag, Sn, Te, In, B, Bi, Sb, and P dispersed within the copper. The total of Ag, Sn, Te, In, B, Bi, Sb, and P within the copper is from at least 0.3 ppm to about 10 ppm. The sputtering target has a substantially uniform grain size of less than or equal to about 50 micrometers throughout the copper and the at least one component.
摘要:
Described is a sputtering target assembly of high purity copper diffusion bonded to a precipitation hardened aluminum alloy backing plate via an intermediate layer of a CuCr alloy and in which the copper contains a micro alloy addition of at least one of Ag, Su, Te, In, Mg, B, Bi, Sb and/or P. Also disclosed is a method that includes preparation of a master alloy for addition to high purity copper and fabricating, heat treating and diffusion bonding processes to produce a sputtering target assembly with a stable fine-grained target microstructure.
摘要:
Described is a sputtering target assembly of high purity copper diffusion bonded to a precipitation hardened aluminum alloy backing plate via an intermediate layer of a CuCr alloy and in which the copper contains a micro alloy addition of at least one of Ag, Su, Te, In, Mg, B, Bi, Sb and/or P. Also disclosed is a method that includes preparation of a master alloy for addition to high purity copper and fabricating, heat treating and diffusion bonding processes to produce a sputtering target assembly with a stable fine-grained target microstructure.
摘要:
The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
摘要:
The invention encompasses a method of forming a metallic article. An ingot of metallic material is provided, and such ingot has an initial thickness. The ingot is subjected to hot forging. The product of the hot forging is quenched to fix an average grain size of less than 250 microns within the metallic material. The quenched material can be formed into a three dimensional physical vapor deposition target. The invention also includes a method of forming a cast ingot. In particular aspects, the cast ingot is a high-purity copper material. The invention also includes physical vapor deposition targets, and magnetron plasma sputter reactor assemblies.
摘要:
The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
摘要:
The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
摘要:
The invention includes a target construction having a sputtering region and a flange region laterally outward relative to the sputtering region. The flange region has a front surface disposed on a front face of the construction and a back surface opposing the front surface. An o-ring groove is disposed within the flange region. The o-ring groove has a planar base surface which has a first width and has an orifice disposed along the front surface of the flange. The orifice has a second width as measured parallel relative to the base surface. The second width is greater than the first width. The flange surfaces can additionally be protected from rubbing by a layer of protective material.