摘要:
An embodiment of the present invention is a technique to process an input/output (I/O) transaction. An emulated device driver in a guest partition interacts with a virtual machine (VM) manager in processing an input/output (I/O) transaction on behalf of an application via an operating system (OS). The I/O transaction is between the application and a device. A device emulator in a service partition communicatively coupled to the emulated device driver interacts with the VM manager in processing the I/O transaction on behalf of a device specific driver via the OS. The device specific driver interfaces to the device.
摘要:
An embodiment of the present invention is a technique to process an input/output (I/O) transaction. An emulated device driver in a guest partition interacts with a virtual machine (VM) manager in processing an input/output (I/O) transaction on behalf of an application via an operating system (OS). The I/O transaction is between the application and a device. A device emulator in a service partition communicatively coupled to the emulated device driver interacts with the VM manager in processing the I/O transaction on behalf of a device specific driver via the OS. The device specific driver interfaces to the device.
摘要:
A method for preventing loopback of data packets sent between entities residing on a single host. In one embodiment, an auxiliary address shared among entities residing on the host indicates that a data packet is to be routed to an entity residing on the host. In another embodiment, a source address and a target address in a data packet header are switched while being routed to a target entity residing on the host.
摘要:
Methods, apparatuses, articles, and systems for receiving a request for an allocation of one or more ephemeral ports from a pool of ephemeral ports associated with a physical device, for a virtual machine of the physical device, are described herein. In various embodiments, an ephemeral port manager of the physical device is adapted to allocate up to the one or more ephemeral ports requested from the pool of ephemeral ports, if up to the one or more ephemeral ports are available for allocation from the pool of ephemeral ports. In some embodiments, the ephemeral port manager is further adapted to mark the allocated one or more ephemeral ports as unavailable to meet an ephemeral port allocation request of another virtual machine of the physical device.
摘要:
A method for preventing loopback of data packets sent between entities residing on a single host. In one embodiment, an auxiliary address shared among entities residing on the host indicates that a data packet is to be routed to an entity residing on the host. In another embodiment, a source address and a target address in a data packet header are switched while being routed to a target entity residing on the host.
摘要:
Methods, apparatuses, articles, and systems for receiving a request for an allocation of one or more ephemeral ports from a pool of ephemeral ports associated with a physical device, for a virtual machine of the physical device, are described herein. In various embodiments, an ephemeral port manager of the physical device is adapted to allocate up to the one or more ephemeral ports requested from the pool of ephemeral ports, if up to the one or more ephemeral ports are available for allocation from the pool of ephemeral ports. In some embodiments, the ephemeral port manager is further adapted to mark the allocated one or more ephemeral ports as unavailable to meet an ephemeral port allocation request of another virtual machine of the physical device.
摘要:
Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802′, 802″ formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
摘要:
Analyte sensors and methods of manufacturing same are provided, including analyte sensors comprising multi-axis flexibility. For example, a multi-electrode sensor system 800 comprising two working electrodes and at least one reference/counter electrode is provided. The sensor system 800 comprises first and second elongated bodies E1, E2, each formed of a conductive core or of a core with a conductive layer deposited thereon, insulating layer 810 that separates the conductive layer 820 from the elongated body, a membrane layer deposited on top of the elongated bodies E1, E2, and working electrodes 802′, 802″ formed by removing portions of the conductive layer 820 and the insulating layer 810, thereby exposing electroactive surface of the elongated bodies E1, E2.
摘要:
Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice. For example, a provided elongated conductive body 510 is advanced through a pre-coating treatment station 520, through a coating station 530, through a thickness control station 540, through a drying or curing station 550, through a thickness measurement station 560, and through a post-coating treatment station 570.
摘要:
Described here are embodiments of processes and systems for the continuous manufacturing of implantable continuous analyte sensors. In some embodiments, a method is provided for sequentially advancing an elongated conductive body through a plurality of stations, each configured to treat the elongated conductive body. In some of these embodiments, one or more of the stations is configured to coat the elongated conductive body using a meniscus coating process, whereby a solution formed of a polymer and a solvent is prepared, the solution is continuously circulated to provide a meniscus on a top portion of a vessel holding the solution, and the elongated conductive body is advanced through the meniscus. The method may also comprise the step of removing excess coating material from the elongated conductive body by advancing the elongated conductive body through a die orifice. For example, a provided elongated conductive body 510 is advanced through a pre-coating treatment station 520, through a coating station 530, through a thickness control station 540, through a drying or curing station 550, through a thickness measurement station 560, and through a post-coating treatment station 570.