摘要:
An apparatus and method for servicing multiple graphics processing channels are described. In one embodiment, a graphics processing apparatus includes a scheduler configured to direct servicing of a graphics processing channel by issuing an index related to the graphics processing channel. The graphics processing apparatus also includes a processing core connected to the scheduler. The processing core is configured to service the graphics processing channel by: (i) correlating the index with a memory location at which an instance block for the graphics processing channel is stored; and (ii) accessing the instance block stored at the memory location.
摘要:
Software can freeze portions of a pipeline operation in a processor by asserting a predetermined freeze register in the processor. The processor halts operations relating to portions of a common pipeline processing in response to an asserted freeze register. Processor resources that operate downstream from the common pipeline continue to process any scheduled instructions. The processor is prevented from initiating any context switching in which a processor resource is allocated to a different channel. The processor stops supplying any additional data to downstream resources and ensures that the interface to downstream resources is clear of previously sent data. The processor prevents state machines from making additional requests. The processor asserts an acknowledgement indication in response to the freeze assertion when the processing has reached a stable state. Software is allowed to manipulate states and registers within the processor. Clearing the freeze register allows processing to resume.
摘要:
Methods, apparatuses, and systems are presented for performing asynchronous communications involving using an asynchronous interface to send signals between a source device and a plurality of client devices, the source device and the plurality of client devices being part of a processing unit capable of performing graphics operations, the source device being coupled to the plurality of client devices using the asynchronous interface, wherein the asynchronous interface includes at least one request signal, at least one address signal, at least one acknowledge signal, and at least one data signal, and wherein the asynchronous interface operates in accordance with at least one programmable timing characteristic associated with the source device.
摘要:
A processor having multiple independent engines can concurrently support a number of independent processes or operation contexts. The processor can independently schedule instructions for execution by the engines. The processor can independently switch the operation context that an engine supports. The processor can maintain the integrity of the operations performed and data processed by each engine during a context switch by controlling the manner in which the engine transitions from one operation context to the next. The processor can wait for the engine to complete processing of pipelined instructions of a first context before switching to another context, or the processor can halt the operation of the engine in the midst of one or more instructions to allow the engine to execute instructions corresponding to another context. The processor can affirmatively verify completion of tasks for a specific operation context.
摘要:
Generally, the present disclosure concerns systems and methods for shadowing status for a circuit with a shadow unit. In one aspect, a system comprises a first circuit in a first dynamic clock domain of a plurality of dynamic clock domains, a processor configured to execute software instructions to generate a request for a status of the first circuit, and a second circuit coupled to the first circuit and to the processor. The second circuit, outside the first dynamic clock domain, is configured to shadow a status of the first circuit and to respond to the request for the status of the first circuit with the shadowed status.
摘要:
An integrated circuit includes at least two different types of processors, such as a graphics processor and a video processor. At least one operation is commonly by supported by two different types of processors. For each commonly supported operation that is scheduled, a decision is made to determine which type of processor will be selected to implement the operation.
摘要:
A method, apparatus and article of manufacture are provided for a transform system for graphics processing as a computer system or on a single integrated circuit. Included is an input buffer adapted for being coupled to a vertex attribute buffer for receiving vertex data therefrom. A multiplication logic unit has a first input coupled to an output of the input buffer. Also provided is an arithmetic logic unit having a first input coupled to an output of the multiplication logic unit. Coupled to an output of the arithmetic logic unit is an input of a register unit. An inverse logic unit is provided including an input coupled to the output of the arithmetic logic unit or the register unit for performing an inverse or an inverse square root operation. Further included is a conversion module coupled between an output of the inverse logic unit and a second input of the multiplication logic unit. In use, the conversion module serves to convert scalar vertex data to vector vertex data. Memory is coupled to the multiplication logic unit and the arithmetic logic unit. The memory has stored therein a plurality of constants and variables for being used in conjunction with the input buffer, the multiplication logic unit, the arithmetic logic unit, the register unit, the inverse logic unit, and the conversion module for processing the vertex data. Finally, an output converter is coupled to the output of the arithmetic logic unit for being coupled to a lighting module to output the processed vertex data thereto.
摘要:
Tile buffers in a graphics processing system are managed use “copy-on-write” semantics, in which tile data stored in a memory location is not transferred to another location until the tile data for one of the buffers is modified. Two memory spaces store tile data, and two logical buffers are used to access the memory spaces. For each tile, a tile association is maintained, indicating which of the two memory spaces is associated with each of the two logical buffers. To copy a tile of the first logical buffer to the second logical buffer, the tile association for the tile being copied is modified. Data for a tile is written to the memory space associated with a target logical buffer after ensuring that the tile association for the tile associates the target logical buffer with a different one of the two memory spaces from the other logical buffer.
摘要:
A graphics pipeline system and method are provided for graphics processing. Such system includes a transform module positioned on a single semiconductor platform for transforming graphics data from object space to screen space. Coupled to the transform module is a lighting module which is positioned on the single semiconductor platform for lighting the graphics data. Also included is a rasterizer coupled to the lighting module and positioned on the single semiconductor platform for rendering the graphics data.
摘要:
A graphics pipeline system and associated method are provided for graphics processing. Such system includes a transform module adapted for receiving graphics data. The transform module serves to transform the graphics data from a first space to a second space. Coupled to the transform module is a lighting module which is positioned on the single semiconductor platform for lighting the graphics data. During use, the graphics pipeline system is capable of carrying out a fog and blending operation.