摘要:
Nickel zinc cylindrical battery cell designs are described. The designs provided limit dendrite formation and prevent build up of hydrogen gas in the cell. The present invention also provides low-impedance cells required by rapid discharge applications. The cylindrical battery cells may have polarity opposite of that of conventional power cells, with a negative cap and positive can. The cylindrical cells may include a gel electrolyte reservoir.
摘要:
An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 μIn maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
摘要:
The nickel hydroxide particles for a nickel hydroxide electrode may be treated using an alkaline solution of a strong oxidizing agent such as sodium or potassium persulfate to modify the surface nickel hydroxide structure. The resulting modified surface structure has been found to impart various benefits to electrodes formed from the nickel hydroxide. It is believed that the oxidation of cobalt compounds at the surface of the nickel hydroxide particles results in a highly conductive cobalt compound that plays an important role in the high reliability, high stability and high capacity utilization of nickel electrodes as described herein.
摘要:
Active material for a positive electrode of a rechargeable alkaline electrochemical cell is made with nickel hydroxide particles or cobalt-coated nickel hydroxide particles treated with strongly oxidizing reagents such as alkali metal persulfate in alkaline solution. The active material also may be made with cobalt-coated nickel hydroxide particles having a high percentage of cobalt(III) on a surface or an average cobalt oxidation state of about 3 measured across the particles. The treated nickel hydroxide or cobalt-coated nickel hydroxide decreases the cobalt solubility in the alkaline electrolyte and increases the high-rate charge and discharge capability. The lower cobalt solubility decreases cobalt migration that can increase self discharge and lead to premature failure.
摘要:
Nickel zinc cylindrical battery cell designs are described. The designs provided limit dendrite formation and prevent build up of hydrogen gas in the cell. The present invention also provides low-impedance cells required by rapid discharge applications. The cylindrical battery cells may have polarity opposite of that of conventional power cells, with a negative cap and positive can. The cylindrical cells may include a gel electrolyte reservoir.
摘要:
An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 μIn maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
摘要:
The conductivity of a zinc negative electrode is enhanced through use of surfactant-coated carbon fibers. Carbon fibers, along with other active materials such as bismuth oxide, zinc etc., form an electronically conductive matrix in zinc negative electrodes. Zinc negative electrodes as described herein are particularly useful in nickel zinc secondary batteries.
摘要:
Active material for a negative electrode of a rechargeable zinc alkaline electrochemical cell is made with zinc metal particles coated with tin and/or lead. The zinc particles may be coated by adding lead and tin salts to a slurry containing zinc particles, a thickening agent and water. The remaining zinc electrode constituents such as zinc oxide (ZnO), bismuth oxide (Bi2O3), a dispersing agent, and a binding agent such as Teflon are then added. The resulting slurry/paste has a stable viscosity and is easy to work with during manufacture of the zinc electrode. Further, the zinc electrode is much less prone to gassing when cobalt is present in the electrolyte. Cells manufactured from electrodes produced in accordance with this invention exhibit much less hydrogen gassing, by as much as 60-80%, than conventional cells. The cycle life and shelf life of the cells is also enhanced, as the zinc conductive matrix remains intact and shelf discharge is reduced.
摘要翻译:可充电锌碱性电化学电池的负极的活性材料由涂覆有锡和/或铅的锌金属颗粒制成。 可以通过向含有锌颗粒,增稠剂和水的浆料中加入铅和锡盐来涂覆锌颗粒。 然后加入剩余的锌电极成分如氧化锌(ZnO),氧化铋(Bi 2 O 3),分散剂和粘结剂如特氟纶。 所得到的浆料/糊料具有稳定的粘度,并且在锌电极的制造过程中易于加工。 此外,当电解质中存在钴时,锌电极容易发生气体渗透。 从根据本发明生产的电极制造的电池比常规电池表现出少得多的氢气,多达60-80%。 电池的循环寿命和保质期也得到提高,因为锌导电基体保持完整,降低了放电。
摘要:
A temperature compensated constant voltage battery charging algorithm charges batteries quickly and safely. Charging algorithms also include methods to recondition batteries after storage and to correct cell imbalances in a battery pack. A battery charger able to perform these functions is also disclosed.
摘要:
Electrodes and electrolytes for nickel-zinc secondary battery cells possess compositions that limit dendrite formation and other forms of material redistribution in the zinc electrode. In addition, the electrolytes may possess one or more of the following characteristics: good performance at low temperatures, long cycle life, low impedance and suitability for high rate applications.