摘要:
A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
摘要:
A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
摘要:
A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
摘要:
A diagnostic extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module and an intercepting decoder chip that receives the chip-select (CS) from the motherboard that selects the memory module for access. When CS is activated, the intercepting decoder chip illuminates a visual indicator on the extender card, allowing a user to locate a memory module being accessed. The exact translation or mapping from logical addresses of test programs to physical addresses of the memory modules is not needed, since the visual indicator shows which memory module is really being accessed, regardless of proprietary address mapping by north bridge chips. Operating system memory accesses are filtered out by a counter that counts accesses during a period set by a timer. When the number of accesses exceeds a threshold, the visual indicator is lit.
摘要:
Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
摘要:
Two robotic arms roam in separate, non-overlapping areas of a test station, avoiding collisions. A traveling buffer moves along x-tracks between a front position and a back position. In the front position, a first robotic arm loads IC chips from an input tray or stacker into buffer cavities in the traveling buffer. The traveling buffer then moves along the x-tracks to the back position, where a second robotic arm moves chips from the traveling buffer to test boards for testing. After testing, the second robotic arm moves chips to a second traveling buffer, which then moves along tracks to a front position for unloading by the first robotic arm. Two traveling buffers may move on the same tracks in a loop. The buffer cavities in the traveling buffer move on internal tracks to expand and contract spacing and pitch between the front and back positions to match test-board pitch.
摘要:
An extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module under test. The extender card has an intercepting EEPROM chip that receives device-select lines from the motherboard. One of the device-select lines from the motherboard to a module EEPROM chip on the memory module is blocked by the extender card and altered so that the intercepting EEPROM chip is read by the motherboard rather than the module EEPROM chip. A memory configuration is read from the intercepting EEPROM chip. The memory module is tested by the motherboard using the configuration from the intercepting EEPROM chip on the extender card. The module EEPROM chip is then programmed with the configuration by altering the intercepted device-select address to select the module EEPROM chip and not the intercepting EEPROM chip.
摘要:
A loop-back extender card is plugged into a memory module socket on a personal computer (PC) motherboard. The extender card has a test socket that receives a memory module under test. An Advanced Memory Buffer (AMB) on the memory module fully buffers DRAM chips on the memory module. The AMB inputs from and outputs to the test socket differential northbound lanes (toward a processor) and southbound lanes (away from the processor). The extender card has northbound loopback traces that connect northbound lane outputs from the memory module back to northbound-lane inputs to the memory module. Southbound loopback traces connect southbound lane outputs from the memory module back to southbound-lane inputs to the memory module. The loop-back extender card allows the AMB to perform loopback testing without modifying the PC motherboard. Series/shunt resistors can be placed on the loopback traces, or serpentine traces can be used to increase loopback delays.
摘要:
Two heat chambers are placed side-by-side. Heated air is blown upward through a first chamber and downward through a second heat chamber. An upper heating unit has a blower and heater that heat air exiting the first chamber and blows the heated air into the top of the second chamber. A lower heating unit has a blower and heater that heat air exiting the second chamber and blows the heated air into the top of the first chamber. Air is circulated in a loop through the two heat chambers by the two heating units. Inefficiencies from return pipes are eliminated by using the second chamber. The heated air is blown past memory modules under test in a heat chamber that has an insulated backplane. Pattern-generator cards outside the heat chamber exercise the memory modules and are cooled while memory modules in the heat chamber are heated.
摘要:
A production test machine pre-screens panels of memory modules for shorts and leakage and other D.C. parameters. Memory modules are constructed as part of a panel of 6 or so modules formed on the same substrate. The modules are connected together by links of the substrate. The D.C. tests are performed on memory modules before separation from the panel (de-panelization), while the modules are still connected together by the panel links. Using parallel testing, a whole panel of modules can be D.C. tested at the same time. Failing modules can then be marked or noted, and the good modules separated from the panel links and sent to a more expensive A.C. tester for functional testing. The spacing or pitch of test heads on the D.C. tester can be adjusted for different sizes of panels.