摘要:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
摘要:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
摘要:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
摘要:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
摘要:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in sample vessels. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the sample vessels from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
摘要:
An automated analyzer for performing multiple diagnostic assays simultaneously includes multiple stations in which discrete aspects of the assay are performed on fluid samples contained in reaction receptacles. The analyzer includes stations for automatically preparing a sample, incubating the sample, preforming an analyte isolation procedure, ascertaining the presence of a target analyte, and analyzing the amount of a target analyte. An automated receptacle transporting system moves the reaction receptacles from one station to the next. A method for performing an automated diagnostic assay includes an automated process for isolating and amplifying a target analyte, and, in one embodiment, a method for real-time monitoring of the amplification process.
摘要:
Methods, systems, and apparatus are provided for automated isolation of selected analytes, to which magnetically-responsive solid supports are bound, from other components of a sample. An apparatus for performing an automated magnetic separation procedure includes a mechanism for effecting linear movement of a magnet between operative and non-operative positions with respect to a receptacle device. A receptacle holding station within which a receptacle device may be temporarily stored prior to moving the receptacle to the apparatus for performing magnetic separation includes magnets for applying a magnetic field to the receptacle device held therein, thereby drawing at least a proton of the magnetically-responsive solid supports out of suspension before the receptacle device is moved to the magnetic separation station. An automated receptacle transport mechanism moves the receptacle devices between the apparatus for performing magnetic separation and the receptacle holding station.
摘要:
A method for classifying textile samples and unknown fabrics into known categories using spectroscopy, chemometric modeling, and soft independent modeling of class analogies (“SIMCA”). The method involves collecting spectral data, preferably diffuse near infrared reflectance data, for a library of known fabric samples, creating a database of principal component analyses for each type of fabric, and using SIMCA to classify an unknown fabric sample according to the database.
摘要:
An ultra-high efficiency particulate air filter for use in the microelectronics manufacturing industry is formed as a fully homogeneous sintered metal filter that exhibits an efficiency substantially in excess of a 6 log reduction and preferably equal to or exceeding a 9 log reduction (an efficiency of 99.9999999%). The filter can be used as a process gas in-line filter in state of the art gas supply systems. The porous metal filter exhibits long term stability relative to mechanical or thermal stress and operates within the desired ultra-high efficiency levels even under high pressure conditions. It does not exhibit an outgassing problem and there is no particle shedding. These features are provided within a unit no larger than those conventionally employed heretofore with organic membranes and under substantially identical operating conditions.
摘要:
A fluid mass flow controller, particularly adapted for controlling mass flow rates of toxic and reactive gases used in semiconductor device fabrication, includes a control circuit connected to pressure sensors for sensing the differential pressure across a flow restrictor in the mass flow controller for controlling a valve to control the fluid mass flow rate to a setpoint. The control circuit compares the differential pressure with the downstream pressure at a measured temperature with a data set of a gas passing through the flow controller for a range of differential pressures and downstream pressures and adjusts the flow control rate accordingly. The flow controller is mechanically uncomplicated including a two part body for supporting the pressure sensors, a remotely controllable flow control valve and the flow restrictor. The flow restrictor may comprise an orifice or nozzle but preferably comprises a sintered metal plug having a predetermined porosity for the expected materials and flow conditions to which the flow controller will be exposed. Process gases to be controlled by the flow controller are tested to provide data sets of mass flow rates at selected temperatures for a range of differential pressures across a flow restrictor and a range of downstream pressures.