摘要:
A Universal-Serial-Bus (USB) device has a USB plug with reduced wobble. A USB metal wrap around the perimeter of the USB plug is attached to a housing by overmolding. A plug supporter is inserted into the front of the USB metal wrap, and has locking tabs that snap over the inside wall of the housing. Side tabs on the plug supporter fit into side slots on the USB metal wrap to secure the plug supporter inside the USB metal wrap. A circuit board with a USB flash controller has USB metal contacts on an extension end that is inserted through the housing and into the USB metal wrap. The extension end fits underneath top tabs on the plug supporter, preventing the extension end with the USB metal contacts from upward wobble when the USB plug is inserted into a USB socket.
摘要:
A case-grounded flash-memory drive has a printed-circuit board assembly (PCBA) with flash-memory chips and a controller chip. The PCBA is encased inside an upper case and a lower case, with a Serial AT-Attachment (SATA) connector that fits through and opening between the cases. The cases can be assembled with the PCBA by a snap-together, ultrasonic-press, screw-fastener, or thermal-bond adhesive method. Dual-axis case-grounding pins draw any electro-static-discharges (ESD) current off the upper case along a primary axis and onto a PCBA ground through a secondary axis washer that is screwed into the PCBA. The primary axis body of the dual-axis case-grounding pins fits around a PCBA notch while the secondary axis passes through a metalized alignment hole for grounding. When the SATA connector is inserted into a host, the host ground sinks ESD currents collected by the dual-axis case-grounding pins.
摘要:
A flash-memory drive replaces a hard-disk drive using an integrated device electronics (IDE) interface. The flash drive has a printed-circuit board assembly (PCBA) with a circuit board with flash-memory chips and a controller chip. The controller chip includes an input/output interface circuit to an external computer over the IDE interface, and a processing unit to read blocks of data from the flash-memory chips. The PCBA is encased inside an upper case and a lower case, with an IDE connector that fits through and opening between the cases. The cases can be assembled with the PCBA by a snap-together, ultrasonic-press, screw-fastener, or thermal-bond adhesive method. Center lines formed on the inside of the cases fit between rows of flash-memory chips to improve case rigidity. The connector has two rows of pins that straddle the center line of the circuit board for a balanced design.
摘要:
A case-grounded flash-memory drive has a printed-circuit board assembly (PCBA) with flash-memory chips and a controller chip. The PCBA is encased inside an upper case and a lower case, with a Serial AT-Attachment (SATA) connector that fits through an opening between the cases. The cases can be assembled with the PCBA by a screw-together or thermal-bond adhesive method. Triple-axis case-grounding tabs draw any electro-static-discharges (ESD) current off the upper case along a primary axis and onto a PCBA ground through a secondary axis that is screwed into the PCBA. An intermediary axis between the primary and secondary axes fits around a PCBA notch while the secondary axis passes through a metalized alignment hole on the PCBA for grounding. When the SATA connector is inserted into a host, the host ground sinks ESD currents collected by the triple-axis case-grounding tabs.
摘要:
A flash-memory device has a printed-circuit board assembly (PCBA) with a PCB with a flash-memory chip and a controller chip. The controller chip includes an external Secure-Digital (SD) interface, and a processing unit to read blocks of data from the flash-memory chip. The PCBA is encased inside an upper case and a lower case, with SD contact pads on the PCB that fit through contact openings in the upper case. Dividers between openings in the upper case that expose the SD contact pads also support the PCB at a slanted angle to the centerline of the device. The PCB slants upward at the far end to allow more thickness for the chips mounted to the bottom surface of the PCB, and slants downward at the insertion end to position the SD contact pads near the centerline. A metal switch-bar or an over-molded controller die may be substituted.
摘要:
A Universal Serial Bus (USB) memory card includes a tube metal housing that is rectangularly-shaped and a Chip-On-Board (COB)-Universal Serial Bus (USB) device and a carrier substrate having a U-block disposed on one side of thereof and vertically extending upwardly from a bottom surface of the U-block, the COB-USB device positioned on the carrier substrate forming a USB card sub-assembly, the USB card sub-assembly being securely located inside the metal housing with the U-block serving to stop the COB-USB device from slipping out of the metal housing.
摘要:
A low-profile Universal-Serial-Bus (USB) assembly includes a modular USB core component and an external case. The modular USB core component includes a PCBA in which all passive components and unpackaged IC chips are attached to a single side of a PCB opposite to the metal contacts. The IC chips (e.g., USB controller, flash memory) are attached to the PCB by wire bonding or other chip-on-board (COB) technique. The passive components are attached by conventional surface mount technology (SMT) techniques. A molded housing is then formed over the IC chips and passive components such that the device has a uniform thickness. The modular USB core component is then inserted or otherwise combined with an external plastic case to provide a USB assembly. An optional carrying case is disclosed.
摘要:
A flash-memory device has a printed-circuit board assembly (PCBA) with a PCB with a flash-memory chip and a controller chip. The controller chip includes an external Secure-Digital (SD) interface, and a processing unit to read blocks of data from the flash-memory chip. The PCBA is encased inside an upper case and a lower case, with SD contact pads on the PCB that fit through contact openings in the upper case. Dividers between openings in the upper case that expose the SD contact pads also support the PCB at a slanted angle to the centerline of the device. The PCB slants upward at the far end to allow more thickness for the chips mounted to the bottom surface of the PCB. A user-slidable switch may be slanted to compensate for the PCB slant. The PCB may have a flex section to facilitate the slant without a slanted switch.
摘要:
A flash-memory device has a printed-circuit board assembly (PCBA) with a PCB with a flash-memory chip and a controller chip. The controller chip includes an input/output interface circuit to an external computer over a Secure-Digital (SD) interface, and a processing unit to read blocks of data from the flash-memory chip. The PCBA is encased inside an upper case and a lower case, with SD contact pads on the PCB that fit through contact openings in the upper case. Supporting end ribs under each of the SD contact pads and middle ribs support the PCB at a slanted angle to the centerline of the device. The PCB slants upward at the far end to allow more thickness for the chips mounted to the bottom surface of the PCB, and slants downward at the insertion end to position the SD contact pads near the centerline.
摘要:
In an embodiment of the present invention, the hollow shell of a mid-seam memory card is composed of three, independently formed, plastic pieces—a bottom plastic piece, a top plastic piece, and a plastic lid. The plastic pieces are cross-linked using, for example, ultraviolet light (UV) activated epoxy, or ultrasonic-press methods. A printed circuit board (PCB) assembly, including memory, is positioned within the cavity of the plastic pieces, and the lid is attached. The PCB assembly can be made using chip on board (COB) or surface mount technology (SMT) components attached using ball grid array (BGA) or thin and small outline package (TSOP) connections. Various read-write/write-protect devices are possible, and can be implemented in the form of a physical feature present on one of the lateral sides of the bottom and top plastic pieces. Such devices allow the card to be read from, or written to, when in read-write mode; and upon action by the user, cause the card to function in a write-protect mode, where no more information can be written to the card's memory. These devices may be manifested as dynamic switches, removably connectible plugs, or permanently removable fin-structures.