Abstract:
Provided is a communication system for improving utilization of on-chip communication architecture and eliminating waiting of a master to use a bus. The communication system includes: a direct memory access controller handling high-capacity data communication among a memory and peripheral devices; a communication switch connected with the direct memory access controller, transferring a header storing information on a location of a passive circuit and a continuous transfer size, and an initial address from an active circuit to the passive circuit, and sending and receiving data to/from the direct memory access controller; and a memory controller sending and receiving the data and the address to/from the direct memory access controller. According to the communication system, a request of an active circuit is not delayed between on-chip circuits, several active circuits can simultaneously transfer data, data communication rate between passive circuits increases, and communication congestion between the passive circuits can be controlled.
Abstract:
An on-chip network interfacing apparatus and method are provided. The apparatus includes a plurality of on-chip network ports; a switch receiving data from a first on-chip network port of the on-chip network ports and transmitting the received data to a second on-chip network port of the on-chip network ports; and an interface unit interfacing an advanced microcontroller bus architecture (AMBA) signal received from an module, which is designed according to an AMBA on-chip bus protocol, and outputting the interfacing result to the first on-chip network port; and interfacing the on-chip network signal received from the first on-chip network port, and outputting the interfacing result to the module. Accordingly, it is possible to establish communications at increased speeds by interfacing a signal according to the AMBA 2.0 on-chip bus protocol with a signal according to the on-chip network protocol.
Abstract:
The present invention relates to an apparatus for controlling power of mufti core processor, which includes a power control device by core unit, controls a plurality of power-related parameters by core unit, and thus decreases a load for power management and enables realization of a low power multi core processor through minute power control. The apparatus includes a processor core adapted to provide code information on an application program for executing to a power regulation controller, and a power regulation controller adapted to receive the code information on the application program from the processor core to determine an operation frequency of the processor core, set an operation voltage, a clock-gating value and a power-gating value according to the determined operation frequency, and provide the set values and voltage to the processor core.
Abstract:
There is provided a video encoding apparatus allowing for enhanced video encoding speed according to the H.264 video coding standard. The video encoding apparatus allows the memories included in the video encoding apparatus to be shared by a plurality of elements through the rearrangement and the structural change of the memories considering an efficient hierarchical motion estimation algorithm. Therefore, the video encoding apparatus has the effects of reducing the amount of transmitted and received data between the frame memory and the video encoding apparatus and enhancing video encoding speed.
Abstract:
The present invention relates to an ultrasonic probe for producing a real-time three dimensional live action image (a four dimensional image), which has a long lifetime, and an improved image quality, can prevent malfunction. The ultrasonic probe for producing a four dimensional image includes power transmission means for transmission of power from an upright motor to a module (2) having acoustic elements for swinging the module, the power transmission means includes a first link (20) having a horizontal portion (22) directly connected to a motor shaft, and a sloped portion projected upward from one side end of the horizontal portion at an angle in conformity with a locus of a swing action of the module, and a second link (21) comprising a horizontal (29) having an interlocking connected thereto and a pair of parallel portion (30) and (31) projected upwardly from opposite ends of the horizontal portion, such that the second link is interlocked along the first link in a state of being interposed between the first link and the module, wherein the interlocking shaft (28) is connected with an inclined portion of the first link by a shaft and the pair of parallel portions is mounting to a lower side of the module in a horizontal direction with a shaft.
Abstract:
A video encoding apparatus and method using a pipeline technique with a variable time slot are provided. More particularly, a video encoding apparatus and method capable of shortening a video encoding time by variably adjusting lengths of time slots when an H.264 video encoding process is performed in a pipeline structure are provided. The video encoding apparatus includes a plurality of functional blocks that perform video encoding steps based on an H.264 standard for macroblocks configuring input digital video signals in a pipeline structure, and a controller that controls lengths of time slots configuring the pipeline structure based on done signals received from the plurality of functional blocks. Lengths of time slots can be adjusted according to operation times of video encoding steps using done signals generated from functional blocks, thereby preventing unnecessary power consumption and delays when using a fixed-length time slot.
Abstract:
The present invention relates to a method for compensating temperature in a crystal oscillator including a capacitor array consisted of a first bank of unit capacitors each with low capacitance and a second bank of unit capacitors each with high capacitance. The method comprising the steps of calculating memory address that stores information about the capacitor array address in accordance with the temperature that is subtracted from present temperature by a temperature offset code; reading data from a memory address corresponding to remain bits excepted lowest bit when the lowest bit is 0 among the memory address; averaging data read from a memory address corresponding to remain bits excepted lowest bit and data of a memory address incremented by 1 from the memory address when the lowest bit is 1 among the memory address; transmitting data read from the memory address or averaged data to the first bank or second bank by comparing the memory address and temperature boundary code; and adjusting the capacitor array with capacitance corresponding to a present temperature by using data transmitted to the first bank or second bank.
Abstract:
There is provided a video encoding apparatus allowing for enhanced video encoding speed according to the H.264 video coding standard. The video encoding apparatus allows the memories included in the video encoding apparatus to be shared by a plurality of elements through the rearrangement and the structural change of the memories considering an efficient hierarchical motion estimation algorithm. Therefore, the video encoding apparatus has the effects of reducing the amount of transmitted and received data between the frame memory and the video encoding apparatus and enhancing video encoding speed.
Abstract:
Provided is a motion estimation apparatus for moving picture coding. The apparatus includes a 1-pel buffer for storing 1-pel unit pixels using luminance signals of a reference frame which correspond to macroblocks of a current frame, a 1-pel estimator for calculating 1-pel unit motion vectors and minimum costs in correspondence to the macroblocks of the current frame and the pixels stored in the 1-pel buffer, a ½-pel interpolator for performing ½-pel unit interpolation using the pixels stored in the 1-pel buffer, a ½-pel buffer for storing the ½-pel unit interpolated pixels, a ½-pel estimator for calculating ½-pel unit motion vectors and minimum costs in correspondence to the pixels stored in the ½-pel buffer, the values calculated by the 1-pel estimator, and the macroblocks of the current frame, a ¼-pel interpolator for performing ¼-pel unit interpolation using the pixels stored in the ½-pel and 1-pel buffers, a ¼-pel buffer for storing the ¼-pel unit interpolated pixels, and a ¼-pel estimator for calculating ¼-pel unit motion vectors and minimum costs in correspondence to the pixels stored in the ¼-pel buffer, the values calculated by the ½-pel estimator, and the macroblocks of the current frame.
Abstract:
Provided are a voltage controlled digital analog oscillator and a frequency synthesizer using the same, the oscillator comprising an oscillator having a frequency of an output signal being determined by a voltage inputted to an analog input end and a digital value inputted to a digital input end; and a digital tuner for comparing the voltage inputted to the analog input end to first and second threshold voltages and changing the digital value inputted to the digital input end according to the result, whereby it is possible to obtain a broadband frequency output with less noise.