Abstract:
A communications system provides a robust and fast inter-base station handoff mechanism, e.g. for networks using Enhanced Base Stations (EBS) equipment. A method for connecting a mobile device to a destination base station in the wireless communications system, may include steps of receiving a mobile device measurement report, transferring context information from a serving base station to possible target base stations, and receiving admission control information from possible target base stations. A priority list of the possible target base stations is calculated and sent to the mobile device. The mobile device connects to one or more of possible target base stations according to the priority list. The method may also entail receiving a release message from one of the possible target base stations to which the mobile device has successfully established a wireless connection, to allow release of resources of the prior serving base station.
Abstract:
A communications system provides a robust and fast inter-base station handoff mechanism, e.g. for networks using Enhanced Base Stations (EBS) equipment. A method for connecting a mobile device to a destination base station in the wireless communications system, may include steps of receiving a mobile device measurement report, transferring context information from a serving base station to possible target base stations, and receiving admission control information from possible target base stations. A priority list of the possible target base stations is calculated and sent to the mobile device. The mobile device connects to one or more of possible target base stations according to the priority list. The method may also entail receiving a release message from one of the possible target base stations to which the mobile device has successfully established a wireless connection, to allow release of resources of the prior serving base station.
Abstract:
A communications system provides a robust and fast inter-base station handoff mechanism, e.g. for networks using Enhanced Base Stations (EBS) equipment. A method for connecting a mobile device to a destination base station in the wireless communications system, may include steps of receiving a mobile device measurement report, transferring context information from a serving base station to possible target base stations, and receiving admission control information from possible target base stations. A priority list of the possible target base stations is calculated and sent to the mobile device. The mobile device connects to one or more of possible target base stations according to the priority list. The method may also entail receiving a release message from one of the possible target base stations to which the mobile device has successfully established a wireless connection, to allow release of resources of the prior serving base station.
Abstract:
A communications system provides a robust and fast inter-base station handoff mechanism, e.g. for networks using Enhanced Base Stations (EBS) equipment. A method for connecting a mobile device to a destination base station in the wireless communications system, may include steps of receiving a mobile device measurement report, transferring context information from a serving base station to possible target base stations, and receiving admission control information from possible target base stations. A priority list of the possible target base stations is calculated and sent to the mobile device. The mobile device connects to one or more of possible target base stations according to the priority list. The method may also entail receiving a release message from one of the possible target base stations to which the mobile device has successfully established a wireless connection, to allow release of resources of the prior serving base station.
Abstract:
One or more devices determine uplink signal strength for a machine-to-machine (M2M) device using a wireless access network. The one or more devices identify a default uplink transmission mode that requires the M2M device to employ transmission time interval (TTI) bundling, when the uplink signal strength is below a particular threshold, and identify a default uplink transmission mode that requires the M2M device to not employ TTI bundling, when the uplink signal strength is not below the particular threshold. The one or more devices store, in a memory, the default transmission mode for the M2M device. The one or more devices retrieve, from the memory and during a wake-up time window associated with the M2M device, the default transmission mode for the M2M device and construct, for the M2M device, an uplink scheduling grant based on the stored default transmission mode.
Abstract:
One or more devices determine uplink signal strength for a machine-to-machine (M2M) device using a wireless access network. The one or more devices identify a default uplink transmission mode that requires the M2M device to employ transmission time interval (TTI) bundling, when the uplink signal strength is below a particular threshold, and identify a default uplink transmission mode that requires the M2M device to not employ TTI bundling, when the uplink signal strength is not below the particular threshold. The one or more devices store, in a memory, the default transmission mode for the M2M device. The one or more devices retrieve, from the memory and during a wake-up time window associated with the M2M device, the default transmission mode for the M2M device and construct, for the M2M device, an uplink scheduling grant based on the stored default transmission mode.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
Electronic device assemblies and methods including an organic substrate based space transformer are described. One assembly includes a space transformer comprising an organic substrate. The assembly also includes a carrier on which the space transformer is positioned, and a clamp positioned to couple the space transformer to the carrier. The assembly also includes a probe array positioned on the space transformer, wherein the space transformer is positioned between the probe array and the carrier. The assembly also includes a printed circuit board, wherein the carrier is positioned between the printed circuit board and the space transformer. The assembly also includes electrical connections to electrically couple the space transformer to the printed circuit board. Other embodiments are described and claimed.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
The present invention discloses a transmission method and system for a Relay Physical Downlink Control Channel (R-PDCCH). The method comprises the steps of: an eNB bearing downlink grant information of a relay node onto an available Orthogonal Frequency Division Multiplex (OFDM) symbol of a first slot of a pre-allocated Physical Resource Block (PRB) pair used for bearing the R-PDCCH, wherein available OFDM symbols in the PRB pair, other than the OFDM symbol used for the downlink grant information, are used for bearing a Physical Downlink Shared Channel (PDSCH) of each relay node; the eNB transmitting the PRB pair bearing the downlink grant information and the PDSCH to the relay node. The present invention is well applicable to a link between an eNB and a relay node, and meanwhile enables backhaul resources to be used adequately.